
大数据时代的“弄潮与识潮”_数据分析师
“专业展会、国际平台、促进合作、共谋未来”——2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会于2015年5月26日至29日,将在贵阳国际会议展览中心举行以“大数据时代的变革、机遇和挑战”为主题的大型数博会,届时将举行展览展示、峰会论坛和创新大赛等活动,综合呈现大数据技术、应用和发展趋势。
绿水青山的确就是“金山银山”。贵阳气候凉爽,空气清新,符合精密制造业研究发展的要求和创新创业者的宜居选择;贵阳的地质构造稳定,地震、台风等灾害罕见,信息网络设备的“安全系数”很高,对大数据产业企业有很强吸引力。在这巨大的“绿色背景”之下,贵阳以首届数博会为契机,引领和推动向大数据时代的快速迈进,无疑显现了其珠联璧合、相得益彰的独特优势与璀灿前景。
当前眼下,“大数据时代”已非一个虚幻空洞的时髦名词,而早涌现了捷足先登的弄潮群雄。贵阳数博会,已不仅仅是一个寻常意义上的博览会:全球第一个“数博会”,马云、郭台铭这些业界“大佬”会来,包括阿里巴巴、惠普、戴尔这些国际顶尖企业在内的250家企业也将接踵而至。对于参与这场“大数据盛宴”的深远意义,还是马云一语中的、振聋发聩:如果大家错过了三十年前广东、浙江的投资机遇,今天一定不能错过贵州!
马云所说“不能错过贵州”,其实就是“不能错过贵阳”、“不能与数博会失之交臂”。这是因为,大数据超越想象,大数据时代正朝我们走来,而在这个发展潮流里,贵阳恰恰坐到了前排、走在了前列。就在今年4月间,贵阳又拿了个全国第一,近期将成立“全国首家大数据交易所”,将诞生一个万亿级别的交易市场,大数据产业链将开启“贵阳模式”,预计在未来3至5年,交易所日交易额将突破100亿元。
从来的说法都称,“机不可失,时不再来”。大数据时代亦是如此,没有今天的认准目标和果敢出手,肯定也难有将来的出类拔萃、脱颖而出。马云口中“不能错过贵州”,既是他个人深思熟虑后的一家之言,又何尝不能作为犹豫踟蹰、举棋不定者的有力催促?这种“大师级”的催促,说到底就是一种机遇来临时,对于“弄潮与识潮”的清楚观察和清醒判断。换言之,“弄潮”须先“识潮”,只有判明了途径、认准了方向,才能真正做到“勇立潮头”,并一步步地做得“风生水起”。
大数据时代的“弄潮与识潮”,也不只是产业巨头、业界精英们要善思多想的事。诚如一些刚刚谋职择业的网友所言,找好工作主要还得找准好行业,行业发展有前景的工作才是好工作;计算机改变世界,现在大数据也像计算机一样改变着世界,这个行业、这个产业的就业前景肯定就好,发展空间也就特别大,有前景的工作才是真正的“金饭碗”。可见,大数据时代带来的,将会是一种全面性和广泛性的渗透与改变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10