
如何准确又通俗易懂地解释大数据及其应用价值
大数据说到底就是一个大字。到底有多大?拿维基百科上的例子来说,CERN做的LHC(大型強子對撞機)周长27公里,里面一共有1.5亿个传感器,每秒钟读数达四千万次。每秒钟发生的粒子对撞高达6亿次。剔除99.999%的无用数据,每秒钟也有100次碰撞需要记录。如果在这些数据里面仅仅使用十万分之一,那么一年也要积累25 petabytes的数据,相当于25000个1TB的硬盘。
在这些数据里寻找希格斯玻色子的证据,是真正的大海捞针。这么大的数据你给我用Excel算算看?不要说计算,根本连载入内存都不可能。再比如说,Facebook据说拥有500亿以上的用户照片。之前美国波士顿发生了爆炸案,这些照片里可能就有爆炸案的线索。那你给我找找看那张照片上面有嫌犯?波士顿马拉松仅运动员就有两三万人,围观群众近五十万。在同一时间同一地点拍摄的照片可能有几十万张,录像可能有几千小时。用人工一张一张看过来是不切实际的。如果要考察爆炸案前后几天的照片那就更不现实了。还有的照片根本就没有时间和地点信息。
再举一个例子。2009年华盛顿大学的研究人员使用15万张Flickr上的图片,重建了整个罗马城的3D模型。整个重建过程的计算使用了496个CPU核心,耗时8小时。如果每张照片按100KB计算,总数据量达到15GB。至少要达到这个级别的数据,才能称得上大数据。下面为照片和重建模型的对比。
如何准确又通俗易懂地解释大数据及其应用价值?如何准确又通俗易懂地解释大数据及其应用价值?
大数据因为大,不仅远远超过人工的处理能力,也远远超过普通台式机的处理能力。只有特定的算法和特别设计的硬件架构才能够有效的处理大数据。简单说来,硬件上要把很多CPU或者很多台式机连起来,算法上采取分而治之的策略。有的数据前后没有关联,特别适合分而治之的方法。而处理互相联系多的数据就比较困难。如果只要寻找嫌犯的脸,可以对每张照片分别处理。如果要考虑连续拍摄的照片有些并没有捕捉到脸,但嫌犯的位置和穿着是相对不变的,这就要考虑照片之间的关系,要分而治之就相对困难一些。
举一个做加法的例子来说明分而治之。比如有两道加法题:34+18和54+39。这两道题目如果两个人分别计算,就比一个人计算要快一倍。这就是分治的优势。但是如果只有一道加法题怎么办?比如两个人要计算34+18,那只好一个人计算个位,一个人计算十位。十位上计算3+1=4,但是还必须考虑个位的进位。所以计算十位的人必须等待计算个位的人给出结果之后,再决定要不要在自己的结果上再加1。为了统一结果一等待,计算速度就变慢了,这就是我们说结果之间存在的关系拖慢计算。
既然大数据处理起来这么困难,为什么还要使用大数据?使用小数据不行吗?这就要说到大数据的应用。所谓机器学习,一般是首先建立一个数据之间关系的模型。然后通过数据来确定模型中的参数。这就是所谓训练。大多数模型都是比较简单的。建模的时候为了简便,往往忽略现实中的很多因素。但是数据多了以后,往往可以弥补模型的简陋。所以数据多是有好处的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02