京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何准确又通俗易懂地解释大数据及其应用价值
大数据说到底就是一个大字。到底有多大?拿维基百科上的例子来说,CERN做的LHC(大型強子對撞機)周长27公里,里面一共有1.5亿个传感器,每秒钟读数达四千万次。每秒钟发生的粒子对撞高达6亿次。剔除99.999%的无用数据,每秒钟也有100次碰撞需要记录。如果在这些数据里面仅仅使用十万分之一,那么一年也要积累25 petabytes的数据,相当于25000个1TB的硬盘。
在这些数据里寻找希格斯玻色子的证据,是真正的大海捞针。这么大的数据你给我用Excel算算看?不要说计算,根本连载入内存都不可能。再比如说,Facebook据说拥有500亿以上的用户照片。之前美国波士顿发生了爆炸案,这些照片里可能就有爆炸案的线索。那你给我找找看那张照片上面有嫌犯?波士顿马拉松仅运动员就有两三万人,围观群众近五十万。在同一时间同一地点拍摄的照片可能有几十万张,录像可能有几千小时。用人工一张一张看过来是不切实际的。如果要考察爆炸案前后几天的照片那就更不现实了。还有的照片根本就没有时间和地点信息。
再举一个例子。2009年华盛顿大学的研究人员使用15万张Flickr上的图片,重建了整个罗马城的3D模型。整个重建过程的计算使用了496个CPU核心,耗时8小时。如果每张照片按100KB计算,总数据量达到15GB。至少要达到这个级别的数据,才能称得上大数据。下面为照片和重建模型的对比。
如何准确又通俗易懂地解释大数据及其应用价值?如何准确又通俗易懂地解释大数据及其应用价值?
大数据因为大,不仅远远超过人工的处理能力,也远远超过普通台式机的处理能力。只有特定的算法和特别设计的硬件架构才能够有效的处理大数据。简单说来,硬件上要把很多CPU或者很多台式机连起来,算法上采取分而治之的策略。有的数据前后没有关联,特别适合分而治之的方法。而处理互相联系多的数据就比较困难。如果只要寻找嫌犯的脸,可以对每张照片分别处理。如果要考虑连续拍摄的照片有些并没有捕捉到脸,但嫌犯的位置和穿着是相对不变的,这就要考虑照片之间的关系,要分而治之就相对困难一些。
举一个做加法的例子来说明分而治之。比如有两道加法题:34+18和54+39。这两道题目如果两个人分别计算,就比一个人计算要快一倍。这就是分治的优势。但是如果只有一道加法题怎么办?比如两个人要计算34+18,那只好一个人计算个位,一个人计算十位。十位上计算3+1=4,但是还必须考虑个位的进位。所以计算十位的人必须等待计算个位的人给出结果之后,再决定要不要在自己的结果上再加1。为了统一结果一等待,计算速度就变慢了,这就是我们说结果之间存在的关系拖慢计算。
既然大数据处理起来这么困难,为什么还要使用大数据?使用小数据不行吗?这就要说到大数据的应用。所谓机器学习,一般是首先建立一个数据之间关系的模型。然后通过数据来确定模型中的参数。这就是所谓训练。大多数模型都是比较简单的。建模的时候为了简便,往往忽略现实中的很多因素。但是数据多了以后,往往可以弥补模型的简陋。所以数据多是有好处的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27