
怎样用大数据来做生意_数据分析师
数据本身不产生价值,如何分析和利用大数据对实际业务产生帮助才是关键;从事大数据的生意要重视投入与产出;许多人已经默默地通过大数据获利。
1、分析微博数据炒股
“过去往往是把数据静止到程序当中分析,但现在不可能等它停下来。”中国工程院院士邬贺铨表示,数据规模越大,处理的难度也越大,但对其进行挖掘可能得到的价值更大,这就是大数据热的原因。华尔街德温特资本市场公司分析全球3.4亿微博帐户留言,判断民众情绪,高兴买股票,焦虑抛售股票,判断全世界高兴的多还是焦虑多,从而判断股票抛售情况。该公司当年第一季度获得7%的收益率。
2、筛选健康企业放贷
众所周知,国内中小企业贷款很难,因为他们没有担保,而阿里公司根据淘宝网中小企业的经营状况,筛选出财务健康和诚信比较健康的企业,提供不需要担保的放贷。据相关数据,阿里公司目前放贷300多亿元,坏账率只有0.3%,工行坏账率1.5%以下,阿里公司的坏账率只有四大国有银行的1/3。
3、卖衣服
Zara收集海量的顾客意见,以此做出生产销售决策,这样的作法大大降低了存货率。同时,根据这些电话和电脑数据,Zara分析出相似的“区域流行”,在颜色、版型的生产中,做出最靠近客户需求的市场区隔。
4、卖书的同时还卖所有的东西
今年初,乔治·派克(George Packer)在《纽约客》发表的一篇名为“亚马逊害了书?”的万余字文章,受到了书业及爱书人的极大关注。他在文章一开始,便尖锐地提问:“亚马逊对消费者有好处,但是对书有好处吗?”相信这个问题,也长久地缠绕在中国书业人士以及爱书人心头。乔治·派克与读者分享了自己调查的结果:亚马逊的创始人贝佐斯,并不是因爱书而开书店,在亚马逊上卖书的一个重要的意图是,收集高收入、高学历用户的资料,在掌握了数百万消费者数据之后,亚马逊就可以想办法把所有东西以低价卖给他们。
5、大数据在医疗行业大有可为
如果说哪个行业从分析大量不同来源的数据中受益,那一定是医疗。在电子病历系统、图片系统、电子处方软件、医疗索赔、公共卫生报告、新兴的健康应用、移动医疗设备及医疗产业中,充满了等待被使用的数据。
对于一个急于寻找方法来降低成本、提高效率并提供更好治疗的行业来说,分析这些数据是意义深远的。成效一定会有,但从不同的、专有的系统中获得数据,却是一个繁琐的过程,对于一个公司来说,相当于不可能。
6、通过大数据卖车已经成为可能
当大多数消费者买车的这些天,他们开始在网上自己搜索。这对经销商和汽车制造商来说是好消息,谁可以通过分析现有的汽车数据营销山上走的趋势中获益。“汽车购物一般包括品牌,型号,内饰水平,当然,价格之间的比较需要大量的研究,”阿维Steinlauf,在汽车研究网站埃德蒙兹的CEO说。“该汽车制造商和经销商知道,如果他们表现良好,在这些比较中,他们会得到到购物清单并赢得市场份额。”这意味着分析数据-无论是来自互联网还是自己的展厅,都是消费者所期待的。
“购车者在垂直汽车网站上浏览过什么车型,现在驾驶什么车型,二手车置换评估能值多少钱,再到售后环节的所购车辆什么时候需要保养,什么时候出了事故需要维修,我们都能知道,而且是从移动端设备中第一时间知道。”9月4日,广汇广西机电的常务运营副总经理罗云宁,给记者描绘了这样一幅汽车经销商在大数据营销时代的蓝图。
7、大数据的迅速增长及相关技术的发展正在给体育用品业带来全新的商业机遇。
畅想未来,有健身习惯的人拿着这些数据上保险有可能会获得更低的费率。但前提是建立在一套完善的健康管理“硬件+软件”生态系统生成之时,否则,它只能是愿景,不可能是点石成金的一门生意。
8、大数据卖手机,小米的经典生意经
小米品牌凭着大数据时代的精准分析对不同用户的理解和把握,不断修正产品,推陈出新,不断营销着自己的品牌及价值,从图8最开始的一小撮,逐渐漫步到神州大地,形成了自己独有的高集中度区域。
9、互联网公司如何利用大数据做生意
说到底,大数据的利用难点在于技术。从数据的收集到存储,再到整理,直到最后的挖掘利用,均是技术活儿。百度含着数据出生,具备天生的大数据挖掘能力。随着支付闭环的打造,数据也可以在各种各样的场景找到落脚点。而阿里和腾讯作为业务驱动和产品驱动的公司,要下大力气将底层的大数据打通,进一步挖掘数据,让数据更好地为公司服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03