京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的法律应对_数据分析师
在不知不觉中,我们已经进入大数据时代,无论你是否意识到,也无论你是否愿意。大数据现象在天文、物理、生物等领域已属平常,直到进入互联网领域,才逐渐引起人们的关注。大数据以P(1024T,1T=1024G)、E(1024P)或Z(1024E)为计量单位,数据量的增加为网络公司提供了精确把握用户群体和个体网络行为模式的基础,通过大数据的分析,可以实现个性化、精确化和智能化的广告推送和服务推广服务,创立比现有广告和产品推广形式性价比高数倍甚至数十倍的全新商业模式。
在大数据时代,每个人都是数据的贡献者,当你浏览网页、网购、扫描二维码、微博、微信以及安装手机APP时,你的个人信息、消费习惯、偏好、甚至你的社交圈子,就已经被大数据分析工具捕获。大数据分析工具使智能、高效地处理庞大数据成为现实,但同时它也能嗅探到你的所有信息,我们的城市在变得越来越智慧的同时,似乎也越来越危险了。可能你只不过经过了一个垃圾桶,就被判断出了通常几点吃早餐、早餐吃什么、以及将要去哪儿吃,然后被精确的投放了促销广告;也可能你只不过点了个匹萨,结果商家就清楚地掌握了你的联系方式、家庭住址、健康状况、近期活动、信用情况、家庭成员情况,甚至你当前的地理位置。现在的感觉用互联网流行词形容,当真是“细思恐极”。
大数据时代的来临,使人类历史仿佛突然进入了一个崭新的世界。在大数据面前,传统的保护手段显得苍白无力。传统的保护个人信息的法律手段“告知与许可”基本失效,因为大数据的价值不单纯来源于数据的基本用途,更多的源于数据的二次利用,很多数据在收集时并无意用作其他用途,而最终却产生了很多创新性的用途,这些都是无法事先告知的,也就没有所谓的事先同意了。传统的保护个人信息的技术手段“匿名化”基本失灵。
在传统手段无力的情况下,大数据时代个人信息保护需要新的治理思维:既不能阻碍大数据的发展,又不能以牺牲民众安全为代价。“告知与许可”的基本法律手段依然可发挥作用,但只适用于数据收集阶段,如浏览网页时普遍存在的cookie。此时应由用户选择是否接受数据的收集与分析以获得更好的用户体验,如果用户选择“否”,其任何数据不得被捕获。在数据的“二次利用”阶段,可考虑设置数据使用时效机制、大数据使用者惩罚机制、新技术强制适用机制。将数据使用限制在一定时效范围内,意味着大数据收集者不再可以永久的保留和利用数据,这有些类似于前述“格斯蒂亚案”确立的“被遗忘权”和美国加州新近推出的“橡皮擦法案”,但是适用范围不限于“被遗忘权”所针对的个人负面信息,适用对象也不限于“橡皮擦法案”针对的未成年人。大数据的价值决定了个人信息保护不可能单纯依赖企业自律,大数据使用者的责任只有在强制力规范下才能确保履行到位,只有严格的罚则才能防止企业为了利润罔顾大众安全。新的时代,法律始终要有技术支撑,“匿名化”技术可更新为“差别隐私”技术。企业真正需要的是有价值的数据,而不是窥探个人隐私。“差别隐私”技术通过故意的数据模糊处理,可以实现大数据库的查询只显示近似结果,而不是精确结果,挖出特定个人与特定数据点的联系将难以实现且耗费巨大,强制推行该技术,在现阶段不失为良策。
大数据时代人人“被裸奔”,已成为不争的事实,时间再也无法治愈一切。我们也许不得不接受这样的现状,但不意味着我们要放弃安全、默认风险,也不意味着数据使用者可以堂而皇之、不承担任何责任。任何新技术产生与发展的初衷和基础应是服务于人类,让人们的生活更简单安逸,而不是在人人头上悬一把达摩克利斯之剑,大数据也不例外。大数据时代,共赢是上策,利益平衡是关键。大数据开启了一次重大的时代转型,但仅仅是一个开始,就像维克托在《大数据时代》中谈到的,大数据时代并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代,大数据为我们提供的不是最终答案,更好的方法和答案还在不久的将来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07