京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的法律应对_数据分析师
在不知不觉中,我们已经进入大数据时代,无论你是否意识到,也无论你是否愿意。大数据现象在天文、物理、生物等领域已属平常,直到进入互联网领域,才逐渐引起人们的关注。大数据以P(1024T,1T=1024G)、E(1024P)或Z(1024E)为计量单位,数据量的增加为网络公司提供了精确把握用户群体和个体网络行为模式的基础,通过大数据的分析,可以实现个性化、精确化和智能化的广告推送和服务推广服务,创立比现有广告和产品推广形式性价比高数倍甚至数十倍的全新商业模式。
在大数据时代,每个人都是数据的贡献者,当你浏览网页、网购、扫描二维码、微博、微信以及安装手机APP时,你的个人信息、消费习惯、偏好、甚至你的社交圈子,就已经被大数据分析工具捕获。大数据分析工具使智能、高效地处理庞大数据成为现实,但同时它也能嗅探到你的所有信息,我们的城市在变得越来越智慧的同时,似乎也越来越危险了。可能你只不过经过了一个垃圾桶,就被判断出了通常几点吃早餐、早餐吃什么、以及将要去哪儿吃,然后被精确的投放了促销广告;也可能你只不过点了个匹萨,结果商家就清楚地掌握了你的联系方式、家庭住址、健康状况、近期活动、信用情况、家庭成员情况,甚至你当前的地理位置。现在的感觉用互联网流行词形容,当真是“细思恐极”。
大数据时代的来临,使人类历史仿佛突然进入了一个崭新的世界。在大数据面前,传统的保护手段显得苍白无力。传统的保护个人信息的法律手段“告知与许可”基本失效,因为大数据的价值不单纯来源于数据的基本用途,更多的源于数据的二次利用,很多数据在收集时并无意用作其他用途,而最终却产生了很多创新性的用途,这些都是无法事先告知的,也就没有所谓的事先同意了。传统的保护个人信息的技术手段“匿名化”基本失灵。
在传统手段无力的情况下,大数据时代个人信息保护需要新的治理思维:既不能阻碍大数据的发展,又不能以牺牲民众安全为代价。“告知与许可”的基本法律手段依然可发挥作用,但只适用于数据收集阶段,如浏览网页时普遍存在的cookie。此时应由用户选择是否接受数据的收集与分析以获得更好的用户体验,如果用户选择“否”,其任何数据不得被捕获。在数据的“二次利用”阶段,可考虑设置数据使用时效机制、大数据使用者惩罚机制、新技术强制适用机制。将数据使用限制在一定时效范围内,意味着大数据收集者不再可以永久的保留和利用数据,这有些类似于前述“格斯蒂亚案”确立的“被遗忘权”和美国加州新近推出的“橡皮擦法案”,但是适用范围不限于“被遗忘权”所针对的个人负面信息,适用对象也不限于“橡皮擦法案”针对的未成年人。大数据的价值决定了个人信息保护不可能单纯依赖企业自律,大数据使用者的责任只有在强制力规范下才能确保履行到位,只有严格的罚则才能防止企业为了利润罔顾大众安全。新的时代,法律始终要有技术支撑,“匿名化”技术可更新为“差别隐私”技术。企业真正需要的是有价值的数据,而不是窥探个人隐私。“差别隐私”技术通过故意的数据模糊处理,可以实现大数据库的查询只显示近似结果,而不是精确结果,挖出特定个人与特定数据点的联系将难以实现且耗费巨大,强制推行该技术,在现阶段不失为良策。
大数据时代人人“被裸奔”,已成为不争的事实,时间再也无法治愈一切。我们也许不得不接受这样的现状,但不意味着我们要放弃安全、默认风险,也不意味着数据使用者可以堂而皇之、不承担任何责任。任何新技术产生与发展的初衷和基础应是服务于人类,让人们的生活更简单安逸,而不是在人人头上悬一把达摩克利斯之剑,大数据也不例外。大数据时代,共赢是上策,利益平衡是关键。大数据开启了一次重大的时代转型,但仅仅是一个开始,就像维克托在《大数据时代》中谈到的,大数据时代并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代,大数据为我们提供的不是最终答案,更好的方法和答案还在不久的将来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15