
看清本质最重要 关于大数据你真的了解吗_数据分析师
在信息大爆炸的今天,云计算、大数据成为大家津津乐道的热门名词。无论是消费、金融、电信、交通,甚至是政治、慈善等等地方几乎都可以看到大数据的身影。大数据分析,也得到大众的认可和追捧。
与此同时,我们也要理性看待大数据,大数据是人类发展的得力助手,但并不是阿拉丁神灯,能满足人们的各种需求,大数据核心不在数据有多庞大,而是它蕴含的是计算和思维方式的转变,因此对于大数据可能常常会有一些疑惑。
大数据是新时代产物?
追溯数据分析的发展,早在1887年,美国统计学家赫尔曼·霍尔瑞斯为了统计1890年的人口普查数据发明了一台电动器来读取卡片上的洞数,该设备让美国用一年时间就完成了原本耗时8年的人口普查活动,由此在全球范围内引发了数据处理的新纪元。
可见数据分析一点也不新,其概念诞生已久,只是在近些年才大热而已。于过去相比,现在的科技更发达,通过网络,通过可穿戴设备等等每天收集着海量数据,数据的处理更依赖计算机,但最后的分析与解读人要人类完成。
多大才称得上大数据?
数据量到底多大才能叫大数据并没有严格的划分,大数据的“大”是宏观多变的意思,并是不指单纯的大小。大数据应该从其背后蕴含的大价值来理解,因为数据已经很多了,人类利用分析数据的能力很强了,我们能从数据当中发现以前不能发现的价值这个角度来理解。
统计出的数据绝对客观?
虽然数据都是有计算机在采集处理,但是也不可能做到绝对客观,计算机只是在按照程序机械的采集,比如在某宝上,销量高的商品不代表真的卖出去了,因为像那种只有一个商品销量奇高的店,99%都是刷单的结果。人的行为很复杂,绝对客观的统计本就很难,就更不要说没有感情的机器在统计,因此,对于大数据我们可以说它是相对客观的。
数据可以告诉我们不知道的内幕?
数据能告诉我们的只有数据,想要知道数据背后的内幕,则需要分析人员不仅仅单纯的统计数据,更要了解数据之间的关联进行分析和总结。
几年前,谷歌的一个研究小组在科学杂志《自然》上宣布其可以追踪美国境内流感的传播趋势,而这一结果仅利用谷歌搜索隐形的热门关键字便作出了结论。但在运行了十几个冬天之后,谷歌的预测比实际情况要夸张一倍。
究其原因,是因为谷歌不知道搜索关键词和流感传播之间到底有什么关联。谷歌的工程师们没有试图去搞清楚关联背后的原因。因此仅通过数据要找出事件背后的内幕是很困难的。
大数据是资讯部门的问题?
大数据的收集与储存,的确可以归类为资讯部门的业务。但定义该收集什么,如何收集,收集后该如何应用,绝对是业务主导部门该负责的。要求 IT 部门把大数据做好,就好像要求财务部门提昇公司获利一样,是本末倒置的。
未来大数据可以改变一切?
关于大数据的作用以及溢美之词早已泛滥于网络,似乎给了人们一种“大数据无所不能”的感觉。但大家可能有所忽视,大数据是对过去与发生的事情进行总结,其本身是没有创新性的,所以对于不同领域,不同项目必须要根据具体问题具体分析解决。大数据角色应该是我们工作生活的得力助手而非主宰。
结语
人类无法存储海量的信息,而丢失信息和误存储信息的比率又大得惊人,所以,大数据对我们而言才如此迷人。尽管迷人,但机器终究是机器,它无法取代人类的思考。就像基于数据和规则的人工智能始终无法取代具有创造性的人脑一样,大数据时代提供给我们的将是更快的运算、更丰富的数据分析结果,但如何使用,关键还在于我们自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01