京公网安备 11010802034615号
经营许可证编号:京B2-20210330
看清本质最重要 关于大数据你真的了解吗_数据分析师
在信息大爆炸的今天,云计算、大数据成为大家津津乐道的热门名词。无论是消费、金融、电信、交通,甚至是政治、慈善等等地方几乎都可以看到大数据的身影。大数据分析,也得到大众的认可和追捧。
与此同时,我们也要理性看待大数据,大数据是人类发展的得力助手,但并不是阿拉丁神灯,能满足人们的各种需求,大数据核心不在数据有多庞大,而是它蕴含的是计算和思维方式的转变,因此对于大数据可能常常会有一些疑惑。
大数据是新时代产物?
追溯数据分析的发展,早在1887年,美国统计学家赫尔曼·霍尔瑞斯为了统计1890年的人口普查数据发明了一台电动器来读取卡片上的洞数,该设备让美国用一年时间就完成了原本耗时8年的人口普查活动,由此在全球范围内引发了数据处理的新纪元。
可见数据分析一点也不新,其概念诞生已久,只是在近些年才大热而已。于过去相比,现在的科技更发达,通过网络,通过可穿戴设备等等每天收集着海量数据,数据的处理更依赖计算机,但最后的分析与解读人要人类完成。
多大才称得上大数据?
数据量到底多大才能叫大数据并没有严格的划分,大数据的“大”是宏观多变的意思,并是不指单纯的大小。大数据应该从其背后蕴含的大价值来理解,因为数据已经很多了,人类利用分析数据的能力很强了,我们能从数据当中发现以前不能发现的价值这个角度来理解。
统计出的数据绝对客观?
虽然数据都是有计算机在采集处理,但是也不可能做到绝对客观,计算机只是在按照程序机械的采集,比如在某宝上,销量高的商品不代表真的卖出去了,因为像那种只有一个商品销量奇高的店,99%都是刷单的结果。人的行为很复杂,绝对客观的统计本就很难,就更不要说没有感情的机器在统计,因此,对于大数据我们可以说它是相对客观的。
数据可以告诉我们不知道的内幕?
数据能告诉我们的只有数据,想要知道数据背后的内幕,则需要分析人员不仅仅单纯的统计数据,更要了解数据之间的关联进行分析和总结。
几年前,谷歌的一个研究小组在科学杂志《自然》上宣布其可以追踪美国境内流感的传播趋势,而这一结果仅利用谷歌搜索隐形的热门关键字便作出了结论。但在运行了十几个冬天之后,谷歌的预测比实际情况要夸张一倍。
究其原因,是因为谷歌不知道搜索关键词和流感传播之间到底有什么关联。谷歌的工程师们没有试图去搞清楚关联背后的原因。因此仅通过数据要找出事件背后的内幕是很困难的。
大数据是资讯部门的问题?
大数据的收集与储存,的确可以归类为资讯部门的业务。但定义该收集什么,如何收集,收集后该如何应用,绝对是业务主导部门该负责的。要求 IT 部门把大数据做好,就好像要求财务部门提昇公司获利一样,是本末倒置的。
未来大数据可以改变一切?
关于大数据的作用以及溢美之词早已泛滥于网络,似乎给了人们一种“大数据无所不能”的感觉。但大家可能有所忽视,大数据是对过去与发生的事情进行总结,其本身是没有创新性的,所以对于不同领域,不同项目必须要根据具体问题具体分析解决。大数据角色应该是我们工作生活的得力助手而非主宰。
结语
人类无法存储海量的信息,而丢失信息和误存储信息的比率又大得惊人,所以,大数据对我们而言才如此迷人。尽管迷人,但机器终究是机器,它无法取代人类的思考。就像基于数据和规则的人工智能始终无法取代具有创造性的人脑一样,大数据时代提供给我们的将是更快的运算、更丰富的数据分析结果,但如何使用,关键还在于我们自己。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29