京公网安备 11010802034615号
经营许可证编号:京B2-20210330
融360推"天机"大数据风控系统 10分钟完成贷款审批
5月8日 基于大数据的风控模型正在成为互联网金融领域一个热门的战场,在线金融搜索服务平台融360联合创始人、CEO叶大清8日在此间表示,该平台推出一个名为“天机”的风控系统,会根据身份认证、还款意愿和还款能力三个大维度,给申请贷款的用户进行信用评分,依据分值来决定是否应放款。
据悉,5万元以下的小额贷款申请,10分钟便可完成审批,最快当天放款。而背后的个人信用审核完全由风控系统自动完成,这将意味着贷款在线化有望很快得到大规模普及。
融360负责风控业务的副总裁李英浩说,目前“天机”系统已经支持了平台的某些小额贷款产品。基于借款申请人自主提交的个人数据,可以做到10分钟左右完成审批。
叶大清指出,信用评估自动化加速了整个信贷决策过程。据李英浩解释,针对特定细分市场,融360的目标是力争5万以内的小额贷款平均12小时放款。而相比而言,人工审核一般需要一周以上才能放款,慢的可能两个月。
除了贷款审批速度实现了突破,贷款获批率也得到了显著提升,同一类用户,用抵押物、收入流水证明等粗放式的传统风控方式,贷款获批率在15%左右,而使用大数据模型结合人工后获批率可以达到30%以上。至于贷款的逾期率,以12个月违约风险举例,通过“天机”模型筛选的用户,逾期率比没有经过筛选的低一半。
据悉,融360并不是第一家在大数据风控系统上发力的互联网金融企业,事实上蚂蚁金服旗下的芝麻信用、一些P2P网贷平台都在陆续开始研发大数据信用评估模型。
叶大清特别强调,融360开发大数据风控系统,不是要做征信服务,而是通过积累的数据和风险技术更好服务于自有平台的贷款人和合作伙伴。
作为金融垂直搜索服务,融360过去三年半帮助用户成功获取了超过3000亿元贷款。在借款人访问数据、用户申请资质信息、网站行为数据、批贷信息和贷后信息方面也拥有独特的优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05