
“大数据”服务大民生_数据分析师
信息化正阔步迈进“大数据”的新时代。“一切皆可数据”的技术变革,持续、广泛、深刻地影响着经济社会诸领域以及人们的思维行为习惯。“大数据”展现出的精确分析、相关作用、统合集成等鲜明特点,为优化公共服务、提高政府效能提供了重要媒介和推力,为创新社会治理体制提供了新的经验启示和技术支持。
人的本身是最大的数据来源。民政作为保障基本民生,提供社会服务,加强基层治理的政府职能部门,肩负着满足人的基本需求、协调人的社会关系、促进人的全面发展等重要职责。民政应积极融入“大数据”时代,创新履职方式,推动社会治理体制创新,利用“大数据”来服务大民生。
用“大数据”服务大民生,要多途径导入。通过建立城乡居民家庭经济状况核对机制,逐步形成包括困难群体、受灾群众、优抚对象、水库移民等在内的基本民生保障数据系统,依法、及时、公平给予救助,牢牢守住全省基本民生保障的底线。
通过建立养老服务需求评估机制,逐步形成全省老年人的数据系统,强化基本养老服务保障,调控社会养老服务资源,引导养老产业发展,更好更有针对性地为全省老年人颐养天年提供支持。
通过建立城乡社会公共服务信息平台,逐步形成城乡居民生活需求的数据系统,进一步改进优化基层公共服务,创新基层社会治理机制,推动发展社区服务业,持续增进城乡居民对社区生活共同体的认同感、归属感。
通过建立社会组织登记管理和服务平台,逐步形成覆盖慈善、社工、志愿者、义工等方面的数据系统,更加准确地掌握社会组织资源的底数,推进社会工作专业化,增强各类慈善机构的公信力,持续增进社会活力。
同时,采集、统合行政区划、村(社区)规模、地名标志,及社区服务中心、避灾场所、救助管理机构、婚姻登记、殡葬服务、烈士纪念建筑物和各类社会福利机构等民政公共服务设施,参与全省基本公共服务及公民信息基础数据系统建设,真正使民政“大数据”成为促进行业发展的富矿,持续优化服务的动力,维护公民权益的保障,勃发社会生机的养分。
用“大数据”服务大民生,要“五化”并举。首先是更新信息化发展理念。充分借鉴运用“大数据”的新理念、新技术,采集、分析、运用各类数据,抢占社会治理高点,强化协同意识,畅通数据流动,自觉克服行业数据的垄断性和局限性,自觉减少对行政权力的过度依赖,厘清政府、市场、社会的关系。
其次是建立标准化转换机制。制定浙江民政标准体系,固化发展成果,定型创新经验,建立常态化、数据化、制度化管理服务机制,并力争上升为行业标准、国家标准,再创浙江民政事业发展体制机制优势。
第三是探索多元治理和共享机制,通过与基层党委政府合力、与相关部门合推、与社会组织合作等共建共享方式,统合数据采集、使用,注重多方合作,促进多元融合,提升综合服务能力水平。
第四是创新社会化参与机制,认真履行现代社会组织体制建设的牵头职能,尊重并发挥社会组织的主体地位和作用,引导与社会组织、法人和公民的协同参与,推动形成“大数据”推广运用与社会治理体制创新交相辉映的新格局。
第五是大力推进民政工作专业化建设。发挥社会福利、社会救助、慈善事业、社区建设等民政领域社会工作示范引领作用,提高社会工作人才的社会认可度,壮大专业人才队伍。推行婚姻登记、殡仪服务、救助管理、地名服务等专业化建设,提升社会服务的专业化水准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23