
大数据流式处理一个不能忽视的问题_数据分析师
这要从数据处理的基本面:内存、存储、数据谈起。
大家都知道,一个大数据集群是由很多台计算机连上网络组成的。计算机里面都有CPU、内存、硬盘,计算机通过网络交换数据执行分布计算工作。集群会按照规则,同时运行着一批执行不同工作的分布计算任务,每次分布计算任务处理的数据容量也不尽相同,少的几十几百M,多的几十几百G,更大的有时候会达到TB的规模(我们在各地部署的Laxcus集群时常处理TB级的数据)。如果当集群中某个时刻迸发出一个超大数据容量的计算任务,这些数据要分散到不同的计算机上去执行计算工作,这个总的数据容量超过集群的内存容量的时候,怎么办?
在存储模式下,这个问题很容易解决:拿硬盘来做缓存过渡。数据进来,检查一下它的尺寸,如果太大,或者一时半会儿处理过不来,就先放到硬盘保存起来。毕竟现在硬盘都已经做到TB级,不差钱的话,一台计算机还可以多配几个。能够利用的存储空间比内存大得多。
放到了流式处理模式下,这个问题就纠结了。如果数据进入后硬盘再处理,就和存储模式没啥区别了。如果不是这样,数据就会太多而内存不足,内存就要溢出,数据就要丢失。集群里任何一台计算机出现这样的故障,整个分布计算任务就是失败。
缓解这个问题的一个办法是升级计算机,CPU换成64位的,然后装更多的内存。原因是32位计算机内存上限是4G,一个集群里,如果都是32位计算机,同时出现几个TB计算任务,那得要多少台计算机?64位计算机可以装更多内存,这样计算机数量可以少些。还顺带提醒一下,虽然内存的价格现在比以前是大大便宜了,但是和硬盘相比,单位容量还是贵得多!这样的成本问题一般运营商会比较在意。另外,这只是暂时的解决办法,谁也不知道下一次的超大数据计算任务啥时候发生,和同时会有几个这样的超大计算任务发生。
比较靠谱的解决办法是在任务计算前,在数据量和集群内存之间做一个评估。当计算任务进来的时候,判断一下它携带数据的最大尺寸,如果集群的内存足够,就把这些内存"预分配"给这个计算任务(这个工作要细划到每一台计算机)。如果不够,就让它等着,直到其它计算任务完成工作,内存被回收,新的内存足够时,才放它执行工作。第二种办法和存储模式差不多,数据先放在硬盘里存着,然后也是等到内存足够了,再执行它的工作。当然,这两种办法都会降低流式处理的计算效率,但也是没有办法的办法,总比出现内存溢出、计算任务失败这样的故障好吧。
综上所述,流式处理是一种成本和效费比都高的计算模式。如果你是土豪,像BAT一样,有足够的银子,只关注数据处理的高性能,不在乎往基础设施上多撒几个钱,尽可以配上强劲的CPU、超大的内存和硬盘或者固态盘,万兆的光纤网络,这时候加上流式处理是上选。如果你是一穷人,缺银子,计算机的性能差,手上一把的32位老式计算机(我们有一个Laxcus集群现在还在用PentiumIII图拉丁芯片,就因为这家伙省电,老而弥坚!),内存有限,网络也不咋的,掏不起太多的电费,不计较数据计算的快和慢,那么凑合凑合,还是考虑存储模式吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19