京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在现实世界中的应用与实践_数据分析师
日前,IBM全球企业咨询服务部的全球信息管理负责人Michael Schroeck 表示:“大多数企业都已经认识到‘大数据’改善决策流程和业务成效的潜能,但他们却不知道该如何入手。调查显示,各行各业、全球各地的组织都已经开始采取一种注重实效的方式开展‘大数据’工作。虽然这些组织大多还处于早期接受阶段,但其中的佼佼者已经开始从‘大数据’项目中获得巨大的价值。”
赛德商学院管理研究员Janet Smart说道:“赛德商学院正与牛津大学各院系的学者共同开发和支持相关课程及研究项目,我们将把世界一流的‘大数据’分析和应用专长汇集到教学和研究内容之中。”
实践“大数据”的五大驱动因素
根据一项名为《分析:大数据在现实世界中的应用》调查显示,各类组织目前开展的大部分“大数据”项目都旨在改善客户体验,贴近客户是大部分组织实践“大数据”的首要任务。
除了“以客户为中心”(49%的受访者将其列为首要任务)之外,“大数据”在早期阶段还用于实现其他的职能性目标。近五分之一(18%)的受访者把优化运营列为首要目标。“大数据”的其它应用则主要集中在风险和财务管理(15%)、实现新业务模式(14%)以及员工协作(4%)方面。
内部数据:“大数据”的主要来源
超过一半的受访者把内部数据视为“大数据”的主要来源。这表明企业正在采取一种注重实效的方式开展“大数据”工作,也显示出其内部系统中仍有巨大的价值尚未得到开发。
内部数据是组织所能获得的最成熟、最易于理解的数据。这些数据是通过多年的企业资源规划、主数据管理、商业智能应用和其它相关工作收集整理而来,并经过了整合和标准化。利用分析技术解读这些来自客户交易、业务往来、事件和电子邮件的内部数据能够为组织提供有价值的洞察。
外部数据:尚未得到充分利用
然而,在所有推行“大数据”项目的组织中,目前正在对社交媒体等外部数据源进行数据收集和分析的组织还不到一半。
其中一个原因是很多组织难以应对和驾驭某些数据类型所固有的不确定性,例如天气、经济、或者社交网络所反映的人的情绪和真实想法。对于能否相信网络上的评论、意见、微博消息以及其他形式的自由言论,受访者在调查中提出了质疑。虽然存在不确定性,但社交媒体数据中仍然蕴藏着宝贵的信息。组织必须认识并驾驭数据的不确定性,并了解这些数据应该如何为己所用。
社交媒体和其它外部数据源未得到充分利用的另外一个原因就是技能缺口。对大部分组织来说,掌握先进的新型数据分析能力仍然是从“大数据”中获得价值的重大挑战,比如文本、传感器数据、地理空间数据、音频、图像和视频这样的非结构化数据和流数据。在此项调查中,只有25%的受访者表示自己具备分析高度非结构化数据的能力。
“大数据”采用情况
四分之三的受访者(76%)目前正在开展“大数据”项目开发工作,但报告证实,大部分受访者(47%)当前仍处于早期规划阶段,但同时也有28%的受访者正在开发试点项目或已经实施了两项甚至多项“大数据”解决方案。还有近四分之一(24%)的受访者尚未着手开展“大数据”活动,并且还在研究大数据对其组织究竟有何益处。
显而易见,“大数据”将带来蓬勃商机。近三分之二(63%)的受访者表示,合理运用数据并部署分析为其组织创造了竞争优势。在此次调查中,提及“竞争优势”的受访者比例与2010年IBM调查相比增加了70%(2010年比例为37%)。
分析:实践“大数据”的核心能力
如今,实践“大数据”的大部分组织都是从运用核心分析能力分析结构化数据入手的,例如查询和报告(91%)以及数据挖掘(77%)。有三分之二的受访者表示其所在组织采用了预测建模技术。但“大数据”也要求组织具备分析半结构化和非结构化数据的能力,其中包括各种全新的数据类型。
在超过一半的“大数据”项目中,受访者表示其所在组织采用了先进技术来分析自然状态的文本,例如呼叫中心对话内容的文字记录。这些分析技术包括解释和理解细微的语言特征,例如情绪、俚语和意图。此类数据可以帮助企业(例如银行和电信服务提供商)了解客户当前的情绪状态,并获得能够直接用于推动客户管理战略的宝贵洞察。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24