
数据挖掘领域是一个独特的行业,通常的招聘面试方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面:
为了解候选人是否具有数据挖掘工程师的潜质,需要一小时的面试,主要通过以下五个环节:
1、简介
如同交谈之初的寒暄一样,简介是使候选人放松下来。可以先介绍一下公司本身的情况,再回答对方的一些疑问。如果问题很复杂,可以将回答放到面试的最后阶段再处理。
2、关于数据挖掘项目
这是最为重要且耗时的面试阶段,询问候选人最近接手的数据挖掘项目的情况和处理方式。要提问的方面包括:
在这个面试阶段,不仅要提问关于“what”的问题,还要很多关于“why”的问题。因为优秀的数据挖掘工程师要能面对客户,清晰的论证并支持其提出的观点。
3、关于数据挖掘的流程
考察候选人对于工作流程的认识是必要的,如果他谈到了跨行业数据挖掘流程规范(CRISP-DM)意味着好兆头。有很多时候,候选人对这些规范不以为然。虽然说从不同的角度来看待问题是一种创新,但是创新也需要建立在坚实在流程标准之上。因为它可以保证我们不会出现大的纰漏。
必要的时候,可以用白板让候选人画出流程图。并让他评价这些工作中最为重要或需要反思的地方。因为建模工作不可能一次完成,反复的提炼问题、建立模型的情况是经常遇到的。
另外可以在某个挖掘流程进行深入考查,例如询问对方如何避免过度拟合,如何从大量的候选变量中进行筛选,如何评价或比较模型的效果。
4、解决问题
软件公司的面试一般会包括“编码测试”,考查数据挖掘工程师也应该如此。一种可以参考的作法是提供一份存在缺陷的分析报告。让候选人对报告进行研究,表达报告中结论的意义,提出其中所存在的问题或不足,提出改进或补救的方法。
5、收尾
在面试的最后阶段,需要回答候选人的其它提问,并使之相信本公司在本行业中的优势地位,以及在职业生涯中的作用。在完成面试后,需要立即将面试记录进行整理存档。
面试是一件苦差事,但也是一个交流学习的机会。通过面试可以了解到其它人遇到的问题,以及他们是如何解决的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10