京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是扭转国内医患关系尴尬局面的唯一办法
所谓“大数据”就是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。现在,随着科技的不断发展,大数据已经在不知不觉中融入了我们的生活,通信、金融、教育、医疗、军事、电子商务甚至政府决策等几乎所有的领域,尤其在医疗领域的应用越来越多,因此,大数据技术在医疗领域的项目管理逐渐引起人们的重视。
我国人口众多,我们的人口是美国的4.4倍,而医生数只约为美国的两倍,医患之间供不应求。每天因为疾病进出医院的人不计其数。随着医院门诊量和住院人数的不断增多,医疗数据量也变得无比庞大。医疗数据被安全地存储非常关键,谁也不希望自己的诊疗病例转眼就不见了。
大数据医疗当前的市场趋势
根据R&R的一份市场调查报告,仅在医疗健康领域,Big Data从2012到2017年的增长率能够达到23.7%,市场总量达到108亿美元。
根据IBM提供的数据,上海市卫生信息系统,每天生产1000万条数据、已建立起3000万电子健康档案、每天调阅10000万次,信息总量已达20亿条。
大数据如何应用于医疗
随着医疗和健康数据的急剧扩容和几何级的增长,利用包括影像数据,病历数据、检验检查结果、诊疗费用等在内的各种数据,运用大数据技术对各种数据进行筛选、分析,为广大患者、医务人员、科研人员及政府决策者提供服务和协助,必将成为未来医疗领域工作的重要方向。
利用大数据,公共卫生研究机构能够更早地预测即将爆发的传染病及其传播范围和规模,比如“流感指数”,据称能够提前两周提供精确度不低于疾控中心的结果。
对个人而言,大数据可以为个人提供个性化的医疗服务。将来的诊疗可以对一个患者的累计历史数据进行分析,并结合遗传变异、对特定疾病的易感性和对特殊药物的反应等关系,实现个性化的医疗。
大数据技术未来在医疗领域的应用会越来越多,许多服务都需要实时的统计分析结果,为决策提供支持。处理过程及传输的实时化、及时化是未来大数据技术在医疗领域发展的重要趋势之一。
大数据应用于医疗的挑战
首先,医疗领域的数据量巨大,数据类型复杂。到2020年,医疗数据将增至35ZB,相当于2009年数据量的44倍。
其次,要想在医疗领域使用大数据技术,首先要有足够的病人、药物等相关信息,但许多病人可能出于隐私考虑不愿提供这些信息,制药企业也有可能因为商业利益不愿共享药物成分等敏感信息。再加上各医院之间医疗信息、软硬件都相互独立,不兼容,使得数据交互不畅,给数据采集带来了一定困扰。
再有,国内大数据分析在医疗领域的应用起步较晚,因为数据分析的前提是拥有相关的数据资产,其中,电子化的医疗病历应该是一个主要的数据源。在美国,从20世纪90年代开始进行EMR推广,至今已经有20多年的时间,已经上升为国家政策,这使得医疗数据的积累基础较好。但是,国内多数医院的电子化程度还不够,有些欠发达地区医院还处在手写处方的阶段。
结语
目前,国内医疗大数据的研究和推广还处于研发初始阶段,在实际应用方面仍然在等待突破。想要顺利地采集数据,找到技术与应用的结合点,需要联合各方面的力量、采纳创新的实践模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05