京公网安备 11010802034615号
经营许可证编号:京B2-20210330
少了分析技能,大数据毫无用处_数据分析师
贵公司员工是否拥有必要的技能,能从大数据中获益?汤玛斯·戴文波特(Tom Davenport)和帕蒂尔(DJ Patil)在其谈数据科学家崛起的一篇文章指出,大数据时代来临,意味着分析大量杂乱无章、非结构性的数据,将日益成为每个人工作的一部分。公司会经常要求经理人和商业分析师利用数据执行实验、解读数据,以及发挥创意,打造以数据为基础的产品与服务。要在这个世界出人头地,许多人需要额外的技能。
有些必须绞尽脑汁处理大数据的公司,已察觉到需要拥有相关技能的员工。Avanade的一份新调查报告显示,超过60%的受访者表示,它们的员工需要培养新技能,将大数据化为洞见和商业价值。设在丹麦,生产天窗、太阳能板和其他屋顶产品的国际制造商威卢克斯集团(VELUX Group)全球商业智慧(Global Business Intelligence)主管安德斯·莱恩哈特(Anders Reinhardt)相信,“在标准的训练方式中,我们只学习跟商业使用者解释如何存取数据和报告,现在这样已不再够用。大数据对使用者的要求远高于从前”。许多产业的高级管理者正在制定计划,准备提升员工的技能。他们告诉我,员工需要:
有意愿并准备好要做实验:经理人和商业分析师必须在他们负责的业务上,运用科学实验原则。他们必须懂得如何建构聪明的假说。他们也需要了解实验测试和设计的原则,包括母群选择和抽样,以评估数据分析的效度。由于金融服务、零售和制药业中,随机测试与实验日益普及,拥有科学实验设计背景的人才特别受到重视。
Google的招聘人员明白,实验和测试是该公司的文化和业务流程中不可分割的部分,所以他们会问应聘者“校车能够塞进多少颗高尔夫球?”或者“曼哈顿有多少个下水道盖?”之类的问题。问这些问题的目的,不在于找到正确的答案,而是用以考验应征者在实验设计、逻辑和计量分析方面的技能。
擅长于数学推理:今天贵公司有多少经理人真的“懂数字”,擅长于解读和运用数字数据?这种技能将越来越重要。威卢克斯的莱恩哈特解释说:“企业使用者不必是统计学家,但他们需要了解如何适当地使用统计方法。我们希望企业使用者了解如何解读数据、衡量指标,以及统计模型的结果。”
有些公司出于需要,在聘用员工的时候,已经确定他们十分擅长于数学推理。第一资本(Capital One)银行的招募作业强调雇用分析和数字处理能力强的员工,并把他们分派到业务的各个层面。包括资深高级主管在内的应聘者,都必须通过严格的面试流程,包括测试他们的数学推理、逻辑和问题解决能力。
能够看到大(数据)画面:你可以称之为“数据处理能力”,指擅长于寻找、操弄、管理和解读数据。而所谓的数据,不只包括数字,也涵盖文字和图片。数据处理能力必须从它们平常的资讯科技职能,广为向外扩展,并且成为每一个业务职能和活动不可或缺的层面。
宝洁公司(Procter & Gamble)的CEO鲍伯·麦唐纳(Bob McDonald)相信“数据建模、模拟和其他的数位工具,正在改造我们的创新方式”。这样的发展,改变了他的员工需要的技能。为了因应这个挑战,宝洁“为组织中的每个晋升层级,量身打造作为基准的数位技能量表”。威鲁卢克斯将针对商业使用者开办数据处理能力训练课程列为优先要务。经理人需要知道有什么数据可用,并且运用数据视觉化技术以处理和解读数据。“或许最重要的是,我们需要协助他们构思新种类的数据,可以如何带来新的洞见,”莱恩哈特指出。
明天的领导者需要确定他们的员工拥有这些技能,并在文化、支援和责任方面建立起配套措施。除此之外,当组织不再只有少数的信息科技专家和统计学博士,而是雇有许多员工埋首分析杂乱无章、复杂、大量的非结构性数据时,他们必须从容自在地负起领导之责。
另一个挑战是:员工有可能下载和混搭数据,而引起数据安全、可靠和准确方面的担忧。但我所进行的研究发现,员工对他们在工作上使用的技术、数据和运用程序,已经负起更多的责任。员工必须了解如何保护敏感性很高的企业数据。领导者则需要学习“信任,但查证”员工所做的分析、在出现分析失效时与员工一道寻找问题所在。
要确保大数据能够产生大价值,企业不但应采用新技术,还要再训练技能,以养成重视数据的心态和分析文化。领导这场革命的公司已经有一批专注于实验、懂数字和数据的员工。你准备好加入它们的行列了吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09