京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据指基表现抢眼 部分跟踪效果差_数据分析师
互联网大数据的迅猛发展让大数据指数基金成为指数型基金行列中的新兵,大数据指数以及相关的大数据指数基金也一直是很多投资者关注的重点。中国基金报记者统计发现,大数据指基今年以来上涨幅度较大,市场表现非常抢眼,但部分大数据指基的指数跟踪效率较低,并不尽如人意。
大数据指数普遍跑赢大盘
截至2015年4月30日,市场上已有4只大数据指数,分别是中证腾安价值100指数、中证百度百发策略100指数、中证淘金大数据100指数和大数据系列策略指数(i100和i300),目前已经有银河基金、国金通用基金、广发基金、博时基金、南方基金等公募与之合作,发布了基金产品跟踪此类指数。
基金研究人士称,由于数据来源的不同,上述大数据指数也各具特点。中证腾安价值100指数是利用腾讯微博影响力和财经领域专家组成的指数评审委员会推荐,作为个股选择来源。中证百度百发策略100指数是通过统计用户在百度的海量搜索数据和投资新闻资讯等百度大数据筛选个股。大数据系列指数(i100和i300)则根据用户在新浪财经对行情或个股新闻的访问、搜索热度以及微博的多空分析数据推荐。中证淘金大数据100指数则基于阿里的交易信息、信用数据等分析细分行业电商的交易趋势,预测行业未来盈利状况而推荐。
这些大数据指数的市场表现非常抢眼。Wind数据显示,截至2015年4月30日,中证腾安价值100指数、中证百度百发策略100指数、中证淘金大数据100指数、大数据系列策略指数i100今年以来分别上涨67.67%、62.49%、63.03%、68.85%,而同期上证综指、沪深300指数的涨幅仅为37.31%、34.42%。
相关产品跟踪效果不理想
记者在采访中发现,虽然互联网大数据指数基金有不俗的表现,但并非尽善尽美,有些大数据指基的指数跟踪效率不甚理想。以跟踪中证腾安价值100指数的银河定投宝为例,其对指数的跟踪效率相对偏低。
据基金业研究人士称,全复制型指数基金的跟踪误差如果控制在0.2%之内,则指数基金运作状况较为理想,一般情况下,日均跟踪误差超过0.35%,年跟踪误差超过4%,则指数基金的跟踪效率就较差。
记者统计发现,截至2015年4月30日,中证腾安价值100指数今年以来累计上涨67.67%,而跟踪该指数的银河定投宝仅上涨54.80%。若按照基金合同约定,银河定投宝的业绩比较基准为“中证腾安价值100指数收益率×95%+银行活期存款利率(税后)×5%”,那么银河定投宝的收益应该是66.04%,但银河定投宝今年以来54.80%的收益,与跟踪的指数差距高达11.24个百分点。此外,广发中证百发100指数基金今年以来收益率也只有58.55%,与对应指数62.49%的涨幅也有一定差距。
此外,根据记者统计,银河定投宝产品还出现了上涨乏力、下跌失速的情况。统计数据显示,在所有上涨交易日行情中,中证腾安指数今年以来累计上涨78.38%,而跟踪该指数的银河定投宝仅上涨69.98%;而在所有下跌交易日的行情中,中证腾安指数今年以来累计下跌27.77%,而跟踪该指数的银河定投宝下跌27.15%。而根据该只基金的基金合同,并未出现会增加“指数增强”的策略。
基金业研究人士称,互联网大数据指数的兴起,丰富了当前国内的指数构成,也受到了众多投资者的追捧,而在大数据指数推出后,跟踪这些指数的基金产品的市场表现和跟踪效率就至关重要,只有跟踪效率良好、经得起市场考验的大数据指基,才能最终获得投资者的认可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09