
大数据时代媒体应创新求变_数据分析师
大数据革新着社会化媒体乃至整个新闻传播业,加速着媒体融合发展的态势。无论是传统媒体还是新媒体,如果能顺势而动,抓住大数据的机遇并将其打造成核心竞争力,将在传媒市场中占据一片蓝海并在未来竞争中掌握先入为主的优势
如今,社交网站、微博、微信等社会化媒体已深刻影响着人们的日常生活和工作,随之产生的“数字足迹”潜藏着个人的情感、喜好、生活习惯,而汇聚人们大量数字“足迹”的社会化媒体的蓬勃发展为大数据时代的到来提供了强大的推动力。与此同时,大数据也革新着社会化媒体乃至整个新闻传播业,加速着媒体融合发展的态势。
所谓“大数据”,就是指需要处理的信息量过大,已超出一般电脑在处理数据时使用的内存量,需要改进处理数据的工具。大数据并非简单的海量数字,而是需要新处理模式进行挖掘分析、具有预测性和决策力的高增长率信息资产。
大数据时代,给新闻传播业带来了不小的挑战。比如,受众信息需求被大数据刷新,但现有新闻生产模式和机制难以快速有效处理海量数据;新闻传播业尚未形成较为成熟的报道逻辑来平衡数据的“去故事化”与新闻报道人性化诉求,容易陷入肤浅层面的同质化竞争;具备数据挖掘、分析能力的新闻传播人才短时间内难以得到足量补给;在传播日益精准化、个性化的大势下,粗放型、广种薄收的商业模式难以为继,跨界者的挑战与竞争与日俱增。
但是,重重困境中也孕育着勃勃生机。无论是传统媒体还是新兴媒体,如果能顺势而为,抓住大数据的机遇并将其打造成核心竞争力,将在传媒市场中占据一片蓝海并在未来竞争中掌握先入为主的优势。当然,这是需要提前做好一些功课的。
其一,增强“数据为主、服务为王”的数据理念与思维。缺少数据资源,无以谈产业;缺少数据思维,无以言未来。大数据时代,传统媒体与新媒体应居安思危、取长补短,不仅将数据思维贯穿于新闻生产中,让数据说话,也贯穿于传媒经营中,让数据发挥效益。
其二,变革现有报道结构与逻辑。大数据时代,深度报道仍然是媒体的主要追求,但与以往建立在个体记者调查、采访能力基础上的调查性报道不同,未来越来越多的深度报道将是基于大型数据的挖掘与分析实现的、对新闻事实的深度揭示与解析。也就是说,趋势预测性新闻和数据驱动型新闻的报道分量将大大增加。因此,新闻传播业应加强上述两方面报道的力度,让大数据走出财经、体育等小范围应用,走向更加广阔的领域。
其三,密切与高校合作培养数据人才队伍。大数据时代的新闻传播业人才至少需要具备多种能力:挖掘、整合大数据的能力;发掘大数据背后新闻价值的能力;进行精确、快速、实时传播的能力等。人才素质的提升仅依靠传媒机构单方之力难以完成,高校新闻传播教育理念与体制也需及时变革跟上步伐。
其四,加强跨界合作补齐自身短板。新闻传播业要想克服自身在硬件和技术方面的短板,必须跨界合作、借力发展,让科技、智能、金融协同发力,把握利益价值链多重环节,将新闻传播与其他服务适时捆绑,收到最佳反馈效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19