京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据永远不属于营销者,而是属于消费者
这是一个令人兴奋的时代,也是一个大数据的时代,数据科学家让我们越来越多的从数据中观察到人类社会的复杂行为模式。以数据为基础的技术决定这人类的未来,但是并非数据本身改变了我们的世界,起着决定性作用的是我们对可用知识的增加。对于大数据,如果你不能够量化它,你就不能理解它,如果不能理解它就不能控制它,不能控制它,就不能改变它和使用它。也就是说重要的是对数据的处理和分析。
当今大数据更直接的影响是对商业模式和企业运营的改变,基于大数据分析的数据库营销和精准营销成为企业的重要的营销手段,社会征信、税收欺诈、银行欺诈侦测、电子商务个性化服务、个性化推荐技术、搜索引擎的精准营销、广告实时竞价、电话营销、接触策略优化等大数据应用越来越广泛,随着数据科学和网络科学技术的发展,数据会深入并影响社会生活的方方面面。
啤酒和尿布
大数据的在商业上的应用,非常重要的一个方面就是:客户关系管理(当然我们还有更多的应用去创造)。
大数据在客户关系管理上,基本上有这几方面:
1、深度的了解用户行为
2、预测用户的行为
3、利用上面的两点,引发用户的购买行为
这是一个前所未有的革命。在大众市场销售的历史中,我们第一次可以看到每一个消费者头脑的内部。得到关于消费者的全景图一直是销售和营销团队长久以来的愿望,但是在今天,如果我们智能的连接数据,深刻的理解个体消费者就鞥能够变成现实。我们不再像传统市场研究者那样询问焦点小组,“你认为这个产品怎么样?你喜欢哪种产品?”,用户也会撒谎,因为用户有的时候根本就不了解自己,更没有办法描述清楚自己,但是数据是不能够撒谎的。最终,我们从提问者转换为观察者!使用大数据全面的了解用户和预测用户的行为,进而为促成用户的消费提供决策的依据和方法,但实际上,这对所有的人都是一场巨大的挑战:顾客不得不忍受数据营销,可能的话,还会爱上它,这也是数据营销的最好的愿景。但是如果数据营销使用的方法不当的话,公司无疑是搬起石头砸自己的脚,永远记住:数据不属于营销者,而是属于消费者!
建立信任
在数据营销的尚不成熟的初起阶段,消费者多数抱有一种广告防护的消极心态。但是在接下来的几年内,消费文化将会沿着一系列决定大多数消费者愿意与公司分享数据的情况发展。数据营销者必须创建一个足够透明和安全的框架。
消费者必须能够看到这一切的源尾和价值,并视数据适用为正当和合理,甚至主动为数据营销为自己提供的个性化服务贡献自己的信息。我们都非常的明白,信任很难获得,但是非常容易失去,这对于个人数据的商业应用来时尤为如此。所以说,建立信任,是大数据营销的基础!互联网的“面具时代”已经结束。“网络世界的第二人生”的观点是过去10年互联网的一个失败,“第二世界”是一个在线世界,其中人们使用化身,将网络世界中的自己和现实生活中的自己彻底的区分开来。但是时代变了,越来越多的网络源生代将会彻底的粉碎“第二人生”。
今天,人们希望在线上和线下时都是自己,人们希望被称呼自己的名字,人们希望作为他们自己存在,希望自己能够被找到,甚至希望自己能够成为网络中的名人。可以预见,如果数据营销使用的得当的话,将会有越来越多的消费者出于信息和热情而共享数据。
当社区中的一个成员用信用卡购买某件产品时,社会化购物平台自动的发布消费者的位置、价格和时间信息。默认的设置下消费信息是公开的,该用户的朋友会从这些信息中的获益。对营销人员和销售人员来讲,这意味着:明智的消费者将开放与企业的对话。很多人甚至寻求比对话更加深入的东西。这是一个机会——为了更好地了解消费者,预测他们的消费心态。更理想的情况下,为了在消费者自己知道之前了解器其心愿。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05