
英特尔关注大数据前沿趋势 促部署落地
如今,在IT圈,你不谈大数据都不好意思说你是做IT的。如今,各大厂商也加大力度在大数据领域拓荒,试图抢占这个未来战略制高点。作为全球知名的IT企业,英特尔在大数据领域深耕已久,大数据与软件关系密切,今天我们就来看一看英特尔在大数据与软件方面的进展情况。
此次我们采访了英特尔公司软件与服务事业部副总裁兼系统技术和优化部门总经理Michael Greene先生;英特尔公司软件与服务事业部、大数据技术全球总经理马子雅女士;英特尔中国研究院院长吴甘沙先生;英特尔亚太研发有限公司物联网解决方案与产品事业部商务开发经理顾典经理,由他们为我们详细介绍了英特尔的情况。
英特尔公司软件与服务事业部副总裁兼系统技术和优化部门总经理Michael Greene
大数据领域 英特尔各司其职
MichaelGreene目前主要负责英特尔内部开源问题,在大数据上面,英特尔一直提供开放代码的大数据和分析平台。目前在STO里面有一个专门针对大数据领域的团队,马子雅女士是这个团队总经理,这个团队有三个主要功能,第一是领导英特尔在开源社区方面的贡献;第二就是通过和业界合作,完善在IA架构上的用户体验;第三,就是基于IA上面对大数据进行优化。这是Michael Greene所领导的团队的最大特点。
英特尔中国研究院院长吴甘沙先生
吴甘沙先生是英特尔中国研究院的院长,目前在大数据这块,主要的任务在SSG方面,这个方面有点向侦察兵的职责,负责在前面谈论,也就是负责大数据方面发展的前沿的一些研发。比如,如今SSG正在努力的研究Hadoop相关东西,比如流处理、图计算、内存计算,这是SSG的第一阶段,接下来还会研究大数据和人的关系,以及大数据跟中小企业以及传统公司的关系等等。
英特尔亚太研发有限公司物联网解决方案与产品事业部商务开发经理顾典经理
物联网行业如今快速发展,也已经成为大数据行业非常重要的一个领域,顾典领导的物联网事业部是英特尔内部的一个部门。如今随着互联网设备的快速增加,这些互联的设备本身每天都会实时的不间断的产生很多数据,从英特尔推广物联网普及的角度来说,顾典不仅仅是关注这些设备的互联,还关注设备互联以后怎么样被高效管理。
第2页:英特尔关注大数据前沿趋势
关注大数据前沿趋势 促行业部署落地
目前,人们无疑关注的是大数据的发展趋势,哪一个行业领域会是英特尔接下来的研发方向呢?Michael Greene表示,深度学习将会作为大数据接下来的一个研究方向。另外,英特尔主要关注在软件上、问题的处理,包括大容量的复杂计算,这上面英特尔可能还会加入一定的精力做进一步的开发,并且现在英特尔已经有一些成功案例。
英特尔公司软件与服务事业部、大数据技术全球总经理马子雅女士
作为英特尔中国研究院的院长,吴甘沙也认为深度学习是发展方向,并且深度学习是大数据分析当中比较偏向高性能计算的一种,比如在Spark上做了很多的各种各样的大数据分析。事实上深度学习现在有很多种方式来对它进行加速,可以用GPU、可以用Xeon Phi,也可以用FPGA这样的平台进行加速。从英特尔研究角度来说,英特尔希望各种选择都能够尝试一下。
无论何时,大数据分析的落地部署一直是用户关注的话题,Michael Greene认为目前需要帮助用户更加快速轻松的部署,Cloudera现在有一个组件——ClouderaDirector,可以帮助客户快速的自动化地部署。另外在开源社区Open Source里面,英特尔一直在做一个项目Sahara,在这个项目不管你是Hortonworks、Cloudera甚至MapR都可以帮助容易的帮助用户实现落地。
英特尔各个部门在大数据这块有明确的分工。Michael Greene比较专注于具体用户的问题,因为只有把用户的问题放在最高点,所有的解决方案才会整合到一块儿。一旦英特尔把问题搞清楚了之后,第二个重心是要在英特尔平台上做最大的优化,尤其是很多时候用户的问题,从端到端,中间的每个组件都要做一些英特尔平台的优化。比如像SSD、新的存储技术这些都可以做到英特尔平台上的优化。
在物联网用与大数据方面,顾典表示,通过和企业用户、行业用户的一些探讨,包括第三方的咨询,英特尔看到物联网的发展还是碰到了一些技术上的瓶颈。如果说以互联设备的增长量来说,从目前的150亿台设备增加到将来的500亿台设备。怎么样把这些设备实现互联,然后在规模部署上突破碎片化一些瓶颈,这是物联网事业部目前关注的地方。
尽管从谈话中我们了解到大数据分析目前还有很长一段路要走,但是我们也能够从几个被访者谈话中了解到大数据的魅力所在,以及英特尔在大数据分析方面所做的努力。对于大数据,英特尔一直走在发展对饿前列,当大多数人在考虑第N个阶段的时候,开始考虑N+1个阶段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28