京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的最终指向是数据指引生活_数据分析师
随着互联网、社交网络以及各行各业在信息化两化融合过程当中等不断产生新的数据,人类社会产生的数据量已经达到了ZB级,特别是这两年随着移动互联网的发展,现在两年的数据是人类社会产生数据量的90%。再往下发展的速度可能更快,到2020年达到了40ZB或者35ZB。
大数据的最终指向是数据指引生活
作为大数据的研究来讲,虽然都在推出很多不同的大数据产品,形成了百花齐放的态势。但另一方面大数据的相关技术还没有完全定型,还有很大的发展空间。
这个发展空间,大数据在国家战略层面来看,世界各国都在推出大数据的战略。就大数据在商业引擎方面的发展现状来说,大数据在不断催生服务模式的创新。因为大数据的出现和发展,有很多希望创业者或者新型的公司也在大数据技术发展浪潮当中不断的涌现。传统行业也有了更合理和高效的数据收集和处理技术像制药、汽车、金融可以更好的通过科学的数据化决策来提升企业运营效率。
数据科学家,相应的高校、研究所包括企业也都设定了研究方向,像中国银联设置了数据科学家的岗位来推动大数据的研究。同时技术创新驱动了数据处理能力的提升,数据处理的方法也有新的方法涌现,可以通过全量的数据得到更好的结果,使得商业模式创新得以实现。大数据是可以帮助提升各方面的工作效率。首先是公共管理方面,大数据使得传统方式的公共管理转变为数据为基础的科学化的工作管理。在工业化方面也可以看到大数据的应用比如福特汽车公司利用汽车传感网络数据以及用户社交网络数据,来分析用户的驾驶行为。大数据在经济金融领域也有广泛的应用,以大数据为基础的新经济分析体系,可以实现对未来的预测。以银联为例,可以有效预测出来未来几天大概银行卡的情况,也可以通过天气的关联性,可以分析今天交易量的多少。
中国银联执行副总裁柴洪峰
大数据的作用还体现在生活服务方面,在大数据出现之前,生活服务都是以产品为中心,为客户提供的服务。而由大数据技术带来的精准营销,推荐系统等方法,使得今天的生活服务是以人为中心,可以为每个人提供个性化的服务。著名的互联网思维就是用户为中心,用户至上,体验为王。客户和用户简单的一个字之差,发生了很大的变化。因为客户是买卖关系产生的,而用户是你享受的服务来产生的。
大数据的最终指向是数据指引生活。通过大数据技术量化生活,记录一切,量化一切,通过数据改善,为人服务为核心,通过大数据技术形成大数据思维,一切都以数据为依据,在数据中不断探索和学习,最终带来科学化的决策,精细化的生产,可预测的经营以及个性化的服务。
中国银联的大数据实践
中国银联是2002年成立的银行卡的组织,现在中国银联是400家的成员机构,有400家银行合作伙伴。银联成立12年来,已经成为发卡量全球第一的银行卡组织,网络规模已经遍及全球142个国家,交易规模全球第二。中国银联有丰富的大数据资源涉及43亿张银行卡,超过9亿的持卡人,超过一千万户的商户,每天有七千万笔的交易数据,每天核心交易数据都要超过TB级,银联的数据资源无论宏观层面还是微观层面都有很高的价值。这个价值体体现在:
银联的数据价值、支付数据的特点是更具参考性,他们可以衡量真实的购买行为,从而促进用户定向,个性定价,产品推荐,用户忠诚度和流失建模等策略,这是支付数据它的价值。
银联开展大数据工作有很多背景要素,从银联支付数据看,银联数据处理过程中也遇到了挑战。银联过去的处理方法已经满足大数据的需求,从银联自身业务看,很多精细化的业务也需要大数据的强力支撑。从合作伙伴角度来看,合作伙伴对多样性的数据服务有需求,从电子商务这个行业来看,通过大数据的挖掘来提升行业发展水平。从国家示范项目建设来看,大数据相关工作也是银联承接国家项目的工作重点,银联也在这方面加大了力度。
银联对大数据有一个“指导思想”:首先希望整合各类内外部的数据,通过合作,基于这些数据建立相应大数据基础设施,可以使这些数据可以安全方便获取。基于大数据的平台,银联会开展大跨度的数据统计分析以及深度化的数据挖掘工作,这些分析和挖掘工作对外对内合作伙伴都进行服务。
银联大数据主要分为基础平台,基础数据,模型研究和应用服务等分四个层次。而建设大数据平台是银联开展大数据工作的第一步,有一个云平台,充分汇集各方面的数据,集成常见的分布式机器学习算法,已经支撑了十几个业务应用系统在实际生产。利用大数据为持卡人提供数据服务,首先持卡人可以通过银联钱包手机APP平台,查询到自己银行卡的历史交易。同时可以向持卡人提供更为丰富的持卡人帐单服务。
银联大数据实践,基于外部数据和数据量化的指标以及数据总体特征,基于数据量化指标,可以分析出每个持卡人的个体特征,基于持卡人个体特征和总体特征,可以为持卡人打上各种类型的标签。除了持卡人维度,在商户维度上做了相应的工作,为商户提供相应的商业智能分析,可以使商户认识到自身的经营情况,也为商户提供了客户忠诚度、流失商户的分析、回头客的分析等。
同时,银联大数据还应用到了风险控制领域,利用机器学习的方法,对银联历史数据进行挖掘,得到了七大交易的判断模型,可以对银联转接交易系统进行实时的判断。
大数据从1.0,发展到2.0,3.0不同发展阶段,各阶段的成熟度逐步提升,银联很清楚大数据资源的质量和价值,但有些不足,使得对终端客户的到达能力还是有限的,因此希望通过数据的集合工作、融合内外部的数据,从而使银联的数据得到价值的提升。在数据集合方面尝试从两个角度:
第一,利用公开的外部技术进行集合。利用爬虫技术在互联网上找持卡人、商户的信息。
第二,通过合作伙伴的数据进行集合如通信运营商的相关数据结合。
金融业大数据未来展望
首先大数据是在发展中完善的。大数据一方面在很多行业被广泛应用,一方面又不够成熟。大数据使用了全新的技术框架,但有时又不适宜传统的应用场景,大数据概念已经充分被解读,但高价值的应用却不丰富。大数据一方面百花齐放,一方面存在应用对接不平滑的现象。我们认为,再经过努力,大数据的价值可以得到进一步的凸显,但是是不是一个通用性的技术,有待拷量。
数据开放带来数据价值的提升,带来1+1>2的效果,但是也会带来信息安全的问题如个人隐私泄露的问题,更好的提升大数据的价值,需要法律政策层面的指导,更需要政府和企业的众多尝试及互相支持,能够产生合作。
对于金融大数据,这将是大数据最有可为的领域之一。金融机构可以说是大数据天生的合作者,一方面自身有着强烈的利用技术红利带来收益冲动,另一方面又有国内较好良好的信息化基础,从数据层面,金融领域有着优质的数据资源,从技术层面看,金融企业的技术团队也有强大的实力,从思维层面看,金融行业拥有最专业的金融能力,可以研究和开发最专业的金融大数据的产品和服务。
面向金融大数据带给行业的变革将是全方位的例如在信用风险评估方面。同时也可以在客户服务方面基于大数据的技术,也可以实现对客户智能化的服务。在智能运营方面,大数据技术也可以对金融企业的数据进行分析,从而帮助金融机构进行运营决策,降低成本,在产品创新方面,大数据参与新产品的设计,结合各方的数据,使企业产品推陈出新。总之,金融服务将从粗放式管理转向科学化的管理,从以利润为中心转向以客户为中心。未来,银联大数据将围绕客户服务展开,结合内外部的资源,形成对持卡人的各方面认知如消费习惯、生活习惯,基于持卡人的认知,我们可以形成持卡人的响应预测。
银联大数据工作将围绕提供稳定、高效、丰富的数据服务开展工作,还将提升大数据系统的稳定性和效率。在大数据快速发展的背景下,合作共赢是大势所趋,合作共赢一方面是数据的互补,数据的共享、融合,创造新的价值。另一方面是资源的互补,资源的协同合作将带来挖掘能力的提升。第三方面是业务互补。业务的互补与互用将发挥出大数据的最大效用,通过数据、资源等多方面的合作,必然可以产生众多联合跨界的创新成果。合作共赢是银联的一贯态度,银联愿携手各方合作伙伴,共建银行卡产业的大数据生态系统。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27