京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据造车 车企与IT企业联盟的新掘金点
未来我们要生产什么样的汽车卖给消费者?在互联网时代,流行元素的更迭速度超过以往任何时候,而且车市竞争激烈,如果还要靠运气去搏或者赌一款车,一旦失败,承担的风险将是巨大的,无论是十亿级的研发投入,还是数年的时间成本。如果继续走完全依靠工程师、设计师和车企高管们直觉和经验的路子,就显得有些out了。
“互联网+”的思路给车企的数据调研带来了新的契机,而且数据调研样本量是传统调研样本量的百倍、千倍,同时,基于互联网的大数据分析相较于外包的线下调研方式更为准确、便捷。2015上海车展前夕,长安汽车和汽车之家达成战略合作,二者宣布将在新平台搭建、产品优化以及产品开发上展开跨界合作,建立起利用大数据造车的未来商业模式,打造一款令用户具有参与感的汽车。
长安汽车和汽车之家是首个宣布要用大数据造车的战略组合,而此前纷纷加入“互联网汽车”热潮的众多车企与IT企业,其合作大多也涵盖利用互联网大数据更好地造车的内容。比如上汽和阿里巴巴的战略合作,未来也会根据消费者需求定制汽车,消费者可以选择自己喜欢的颜色、配置等各种个性化需求。
在一些自主品牌人士看来,国内车企产品策略更为灵活,而且国内互联网应用,特别是电商方面已经超越了国外,能否实现“互联网+”、快速建立起大数据造车模式,将决定中国自主品牌未来5-10年能否超车合资品牌。
诞生背景:诉求与浪费
“我们在线下做数据调研的时候,消费者往往是希望配置越高越好,而经销商希望定价越便宜越好。配置越多价格就越高,新车搭载哪些配置有时非常难抉择,如何实现厂家成本和消费者诉求之间的平衡非常考验市场团队的判断力。”多位自主车企人士与经济观察报记者交流时吐槽。
汽车之家创始人兼总裁李想认为:“消费者需求的变化在加速。传统汽车制造,六七年换代的模式显然已很难适应当今的变化,甚至每年的小改款也显得不合时宜,能够按照消费者的需求去打造面向未来的企业和商业模式,这个决定了车企未来十年的胜负和行业地位。”
记者发现,国内诸多自主品牌和合资车企均有负责产品研发前端的市场调研团队,人数从几人到几十人不等,该团队多是位于企业市场部门之下的一个小组。特别是自主品牌近几年负责产品前端的团队发展迅速,例如广汽就成立了多达十多人的市场调研团队,而长安作为自主品牌新贵,则将原来市场部公关、传播、市场活动的职能剥离成立了集团产品策划部,是国内首个针对产品前端数据收集和分析设置专门部门的车企。
但由于自身团队人手有限,数据收集一部分靠团队对市场现有的畅销车型的全面剖析,另一方面来源于外包的调研公司,但如何确保外包调研公司收集的数据准确、样本够大和没有水分却成了难题。
“从别人家厨房里偷原料做的菜,始终缺些东西,大厨只好将就下,用这点东西极力做出花儿来哄哄食客了。”长安一位多年负责产品前端数据调研和分析的人士向经济观察报记者表示,“企业知道自己需要什么,喜欢什么口味,但是没有原材料也是干着急。”
大数据挑战:食材挑选
“再大的汽车厂家都会存在拍脑袋的情况,厂家做了很多调研,结果有些产品还是不行。”李想认为汽车之家开辟大数据造车模式可以有效解决当下车企在产品前端开发上的困境。与竞争对手易车全面转向电商不同,汽车之家在汽车类媒体网站的转型时代,开始了新的道路探索,即“大数据造车服务商”。
据了解,长安和汽车之家利用大数据联合造车的模式是:长安要改进一款车型,汽车之家会向其论坛注册的认证车主发放开放式问题,收集到非常准确的数据,比如用户希望增加什么样的配置。汽车之家内部人士透露,未来随着项目推进,在这个合作平台上,消费者可以按照自己需求定制属于自己的互联网智能汽车。
但是,样本量大了,如何从纷繁复杂的大数据食材中挑选出自己需要的菜却是一项难题。在“互联网+”时代利用大数据调研,就不会产生传统线下调研的问题?“用户调研得到的信息不一定准确,很可能随口说喜欢什么,而通过大数据能比较完整地了解用户的偏好,通过用户的网络行为来得到较为准确的用户行为。”汽车之家CEO秦致表示。
在李想看来,这种对用户有过基本判断和定位后再做的调研更为精准和有效,这是汽车之家开辟新的商业模式的差异化竞争优势。“这种模式比拍脑袋定产品设计,或者外包给调研公司找一堆大学生做线下调研的方式强很多。而且外包公司有时会根据汽车厂商喜好出调研结果,而不是消费者想要的结果。”
在阿里汽车事业部总经理王立成看来,大数据比消费者更了解自己。“大数据未来的应用是给消费者提供个性化服务,比如说太太要生孩子,丈夫在网上搜儿童尿不湿和衣服,我们就知道给你配备什么样的安全座椅,装在什么车上更有空间,店小二做不到,大数据能做到。”王立成表示。
不管是上汽和阿里的合作,还是长安和汽车之家的战略合作都没有排他性。这意味着,一旦双方探索出成熟的商业模式,未来国内其他自主品牌和合资车企均可进入。“如果到了那个商业模式,我们还是一个看客,这个企业就消失了。”李想表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05