
数据分析也好,数据挖掘也好、统计分析也好,商业智能也好都需要在学习的时候掌握各种分析手段和技能,特别是要掌握分析软件工具!我曾经说过,沈老师的学习方法,一般是先学软件开始,再去应用,再学会理论和原理,因为是老师,再去教给别人!没有软件的方法就不去学了,因为学了也不能做,除非你自己会编程序。
那么在数据分析领域,都有哪些软件分析工具呢?如何选择呢?其实很多领域或者说分析方法都有相应的软件工具,只要你想找就应该能够找到!
第一维度:数据存储层——>数据报表层——>数据分析层——>数据展现层
第二维度:用户级——>部门级——>企业级——>BI级
首先,存储层:
我们必须能够存储数据,对个人来讲至少应该掌握一种数据库技术,当然也不一定要熟练操作,但至少要能够理解数据的存储和数据的基本结构和数据类型,比如数据的安全性、唯一性、冗余性,表的关系,粒度,容量等,最好能够理解SQL查询语言的基本结构和读取等等!
Access2003、Access07等:这是最基本的个人数据库,经常用于个人或部分基本的数据存储;
MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力;
SQL Server 2005或更高版本,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了;
DB2,Oracle数据库都是大型数据库了,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
BI级,实际上这个不是数据库,而是建立在前面数据库基础上的,这个主要是数据库的企业应用级了,一般这个时候的数据库都叫数据仓库了,Data Warehouse,建立在DW级上的数据存储基本上都是商业智能平台,或许整合了各种数据分析,报表、分析和展现!
第二:报表层
当企业存储了数据后,首先要解决的报表,还不是分析问题,是要能够看到,看到报表,各种各样的报表!国内外有专门提供报表分析服务的企业和软件。
Crystal Report水晶报表,Bill报表,这都是全球最流行的报表工具,非常规范的报表设计思想,早期商业智能其实大部分人的理解就是报表系统,不借助IT技术人员就可以获取企业各种信息——报表。而且很多数据库内置的报表也是采用CR报表的开发版嵌入的!
Tableau软件,这个软件是近年来非常棒的一个软件,当然它已经不是单纯的数据报表软件了,而是更为可视化的数据分析软件,因为我经常用它来从数据库中进行报表和可视化分析,先暂列在报表层;
这个软件从3.0开始,现在已经有了5.1版本,两年的时间已经到了服务器和Web方式了!
当然,如果企业有上万张报表,需要好好管理起来,还有安全性,并发请求等,就需要有Server版
第三:数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel,我经常用的就是统计分析和数据挖掘工具;
Excel软件,首先版本越高越好用这是肯定的;当然对Excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
SPSS软件:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件。
Clementine软件:当前版本13.0,数据挖掘工具,我从6.0开始用,到了13版,已经越来越多的提高了更多有好的建模工具,现在改名叫PASW Modeler 13建模器了。而且与SPSS统计功能有了更多的整合,数据处理也更加灵活和好用。
SAS软件:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!
当然,我主要是采用SPSS和Clementine,有时候就是习惯,当然会了一种软件在学其他的也不是很困难!
JMP分析:SAS的一个分析分支
XLstat:Excel的插件,可以完成大部分SPSS统计分析功能
Ucinet社会网分析软件:SNA社会网络分析是非常流行和有价值的分析工具和方法,特别是从关系角度进行分析社会网络,关系分析非常重要,过去我们都是属性数据分析。
第四:表现层
最近我一直在研究数据可视化技术,一方面是因为Excel大家有需求,另一方面就是我第一个购买了Xcelsius,也写了《Excel高级应用与数据分析》和《数据展现的艺术——Xcelsius》。这个领域的软件,特别是一些小工具非常有价值!
PowerPoint软件:这个没得说了,大部分人都是用PPT写报告;
Visio、SmartDraw软件:这些都是非常好用的流程图、营销图表、地图等,而且从这里可以得到很多零件;
Swiff Chart软件:制作图表的软件,生成的是Flash;
Color Wheel软件:配色软件
Yed软件:网络关系图、流程图和图形分析软件,类似SNA分析,我经常用来设计流程图,还有就是分析优化关系图;
Netdraw软件:这是社会网络分析展现软件,主要是可视化网络关系图的,读取Ucinet软件;
Mindmanager软件:思维导图,非常好的软件,可以把非线性思维很快构建起来,并且项目组织管理、报告设计构想都可以应用,直接生成PPT等,当然这个软件功能非常强大,我的学生都用它来做笔记和会议记录;
Xcelsius软件:Dashboard制作和数据可视化报表工具,可以直接读取数据库,在Excel里建模,互联网展现,最大特色还是可以在PPT中实现动态报表;这个是我最希望应用的一个软件工具,非常有价值!
最后,需要说明的是,我这样的分层分类并不是区分软件,只是想说明软件的应用,其实每个层次的软件都是相互融合的,追求:平台化,整合化,智能化,可视化,专业化,都是各有特色;价格也不同,有免费的,有上百万的;有单机版的,有服务器版的;有正版的,有盗版的!
有时候我们把数据库就用来进行报表分析,有时候报表就是分析,有时候分析就是展现;当然有时候展现就是分析,分析也是报表,报表就是数据存储了!
没有最好,只有更好,适合你的就是最好的!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14