京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 各种新兴职业应运而生_数据分析师
现今,大数据浪潮已经席卷全球的各种组织,在全球激烈的经济竞争中,大数据也为企业带来了无限的商机。了解和预测客户的喜好以及市场的增长趋势是非常重要的,而掌握核心信息则意味着将在竞争中占据先机。
企业应当抓住此契机,但这需要拥有对应技术的人员支持,相关的从业人员更了解如何管理数据、建立分析系统并使得数据变得具有价值。EMC最近的一项调查也证实了这点。调查结果显示83%的人认为大数据浪潮所催生的新技术增加了数据科学家的需求,同时64%的人认为将出现技术人员供不应求的局面。
事实上,麦肯锡全球研究院的研究预测在未来6年,仅在美国本土就可能面临缺乏14万至19万具备深入分析数据能力人才的情况,同时具备通过分析大数据并为企业做出有效决策的数据的管理人员和分析师也有150万人的缺口。
Ventana研究公司的分析师David Menninger指出在其公司最近所作的一项调查显示,在169位公司高管中有四分之三的人认为技术人员缺乏是企业无从应对大数据挑战的重要因素。
Hadoop除了核心设计思想MapReduce和HDFS(Hadoop Distributed File System)外,Hadoop还包括了从类SQL查询语言HQL,到NoSQL HBase数据库(NoSQL数据库通常用来处理非结构化的数据,包括音频、视频等。),以及机器学习库Mahout等内容。Cloudera、Hortonworks和MapR都已在他们的分布式系统中加入了Hadoop项目。
而MapReduce编程模式可以被认作是云计算技术实现的灵魂。MapReduce是一种处理大型及超大型数据集并生成相关的的执行的编程模型,其主要思想是从函数式编程语言借鉴而来,同时包括从矢量编程语言借来的特性。
TechTarget的特约编辑Beth Stackpole就指出当今管理传统结构化数据环境的团队确实相当专业,但面对向Hadoop和MapReduce等开源大数据技术时则显得有些无从应对。导致这其中的原因是应对传统关系数据库的技能无法转化为应对大数据世界中海量非结构化数据的技能。而NoSQL数据库技术恰恰是根据新型平台核心构建的。
热门职业类型:
大数据处理系统管理员
大数据处理系统管理员负责日常Hadoop集群正常运行。例如直接或间接的管理硬件,当需要添加硬件时需保证集群仍能够稳定运行。同时还要负责系统监控和配置,保证Hadoop与其他系统的有机结合。
大数据处理平台开发人员
大数据处理平台开发人员负责构建大数据处理平台以及用来分析数据的应用。由于其在开发领域已具备相关的经验,所以比较熟悉相关的工具或算法。这在编写、优化以及部署各种复杂的MapReduce的工作时会有所帮助。运用大数据相关技术的从业人员的作用类似传统数据库世界中DBA的定位。
数据分析和数据科学家
数据分析和数据科学家基本属于同一类别的工作,这些具备专业领域知识的人士研究相应的算法分析对应的问题,而数据挖掘也是其应掌握的重要技术。帮助创建推动业务发展的相应的大数据产品和大数据解决方案。
数据管家
企业要提高数据质量必须考虑任命数据管家。数据管家需利用Hadoop汇集企业周围的大量数据,并将数据通过ETL的过程被清洗和规范化,进入到数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家保证市场数据的完整性,准确性,唯一性,真实性和不冗余。
虽然现今面临技术人员匮乏的状况,但也并非绝望。Cloudera公司的Omer Trajman就指出Hadoop做为大数据技术的解决方案并不像学习如何制造火箭那样困难。几年前,了解Hadoop的人还寥寥无几,但现在越来越多的人开始学习Hadoop。企业应当鼓励并培养技术人员学习Hadoop技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27