
块数据:大数据发展的趋势、挑战和机遇
在25日的中国侨联青年委员会“块数据与城市发展”专题讲坛上,各方对大数据进行了阐述和解读,表明了这样的观点:大数据将在经济领域彻底颠覆人类自工业革命以来积累形成的经济模式和商业模式,而块数据将是大数据发展的趋势。
为配合理解什么是大数据发展的趋势、什么是块数据,本报今日起开设“块数据漫谈”专栏,陆续推出科普文章,以飨读者。
大势所趋 从“条数据”到“块数据”
对于大数据时代,目前人们所讨论的数据几乎都是条数据,条数据是指某个行业或领域呈链条状串起来的数据,他们彼此割裂、互不融通,限制了大数据在经济社会发挥作用。
与之相比,块数据是在一个物理空间或者行政区域形成的涉及到人、事、物等各类数据的综合,相当于将各类“条数据”解构、交叉、融合。在块数据集合过程中,包含了数据空间的填充、空间数据的重构、集合过程的组构,及组构过程中的集合,同时还有新数据的汇集和原有数据组合后的衍生数据。通过块数据的应用,可以挖掘出数据更高、更多的价值。
举例来说,一个百货商场每天都会卖出很多商品,每个商品的原材料、品牌设计、广告营销数据、百货商场卖出商品的数量、种类数据,消费者在商场购物、娱乐的数据,将所有在商场这个物理空间产生的数据求和,得到的就是块数据。而一个数据的变化会带动其他数据发生改变,比如,当商场的影院播放一部聚集人气的影片时,商场的其他产品销量也会上升,这一过程又会衍生出新的数据。这个例子也充分说明了块数据的强活性,即随时随地都在进行数据更新。
因此,块数据的商业价值就在于通过对块数据的挖掘、分析,我们能够实现对事物规律的精准定位,甚至能够发现以往未能发现的新规律。可以毫不夸张地说,在这个时代,得“块”者得天下。
“大材大用” 块数据应用面临挑战
在创新商业模式方面,通过块数据将以往的“数据孤岛”连成一片后,可以综合分析出所需的商业要素,如消费喜好、生活需求等,我们就可以从中精确找准那些高度个性化、长尾化的市场需求,孕育产生全新的商业模式。例如,华为公司基于IT基础设施领域在存储和计算的优势,提供整体大数据解决方案就属于此类。
同时,块数据在社会领域应用上也有广阔前景,包括提升社会保障水平、推动社会组织更好履行社会责任等。社会公共文化在块数据的催化下也将被重新定义,在全社会形成诚信、分享、开放、创新的文化氛围将更容易实现。在块数据的推动下,政府职能也发生着深刻改变,具体表现在模式、服务、规则的不断升级和优化。
但是块数据的非结构化比例相比条数据而言更高,使得块数据开发、应用和管理的难度更大,因此在块数据应用方面我们面临着非常多的考验。
首先,块数据的形成是一个构建生态系统的工程,这个生态系统需要建立包含标准确立、技术支撑、安全监管、开放体系构建等多要素的整套规则体系,规则体系的缺失将无法给块数据的应用提供一个安全稳定的大环境,会给块数据应用中可能会遇到的清洗、共享、利益分成、隐私保护等问题解决带来困扰。
此外,由于只有结构化的数据才能进行对比分析,而传统的数据库技术已经不再适用非结构化数据,与国外技术相比,国内的非结构化处理技术的先进性和可靠性仍有很大差距。
同时,缺少法律约束、道德自律、技术手段等方面的数据安全保护支撑,数据安全问题日益凸显,保护公民隐私刻不容缓。而数据确权、数据定价、数据保险和数据货币、登记、交割等一系列新的金融业态将会随着大数据产业链的完善而产生,金融市场的不稳定性将成常态化。
大有可为 块数据催生广阔前景
挑战艰巨,但是无法遮盖块数据应用的巨大潜力和价值。不久的将来,块数据将对商业领域、民生领域、政府治理领域留下深刻烙印。
在商业领域,基于人的主体性构建的块数据首先影响的是各类服务行业,通过数据挖掘,在发现需求的同时又能创造需求,紧接着再根据需求为客户定制服务和产品,在这一过程中,影响又随之向工业、农业延伸,数据本身也逐步完善自己的产业结构,最终可以形成全产业链条。
在民生领域,通过块数据应用,民生服务将进入长尾化和个性化阶段,基于数据模拟技术,能够对重大民生事项实现提前预测,变模糊被动的后端治理为见微知著的前端治理。此外,基于深度学习技术,块数据可对重大民生问题的解决提供智能化的支持,有助于降低服务成本,提升工作效率,形成一个更加温馨、更具效率的民生服务体系。
在政府治理领域,在块数据思维的引领下,政府既有行为将会发生巨大转变。对政府内部机构来说,块数据可以打破壁垒,连接孤岛,通过信息共享、工作联动的方式推动工作的有效开展,对群众来说,随着数据公开的常态化,社会公众对政府的日常运作的监督也将更有效。同时,块数据的应用可以让政府决策更具科学性和前瞻性,打造智慧政府和法制政府将成为可能。
比如,运用块数据,政府可以根据个人的不同情况,以定制化的方式让老百姓得到更好的服务,使公共管理领域真正实现高效。而一些长期以来难以解决的问题比如环境污染、食品安全等都可以通过块数据的公开倒逼责任主体执行改革,政府工作模式从以往的单纯结果导向向结果和过程导向同时并重转变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28