
大数据重要,直觉也不可或缺。这是本月早些时候在麻省理工学院召开的一次业界会议的主题。
麻省理工学院数字商业中心首席科学家安德鲁麦卡菲(Andrew McAfee)称,大数据将成为人类商业历史上新的篇章。该中心另一名教授埃里克布林约尔森(Erik Brynjolfsson)称,大数据将取代想法、范例、组织以及人们思考世界的方式。
这些前卫的预测的前提是:Web浏览记录、传感器信号、GPS跟踪和社交网络信息等数据能够以前所未有的程度面向衡量和监控人类及设备的行为敞开大门。通过计算机算法,可以预测出人类的许多事情,如购物、约会或投票等。
业内专家预计,最终的结果就是:世界变得越来越智能,企业的工作效率越来越高,消费者获得的服务质量越来越高,人们所做出的决定也越来越合理。
我之前写过不少关于大数据的文章,但在2012年底这个特殊的时刻,我想应该是反思、 提问和质疑大数据的时刻。
从商业评估中挖掘实用启示并非新鲜事物。100多年前,弗雷德里克温斯洛泰勒(Frederick Winslow Taylor)的名著《科学管理原理》就是大数据的前身。泰勒的评估工具是秒表,为员工的每一个行动进行定时和监测。泰勒及其助手利用这种时间和动作研究模式来重新设计最有效的工作方式。
但如果这种方法被过度夸大,就成为了卓别林《摩登时代》(Modern Times)所讽刺的对象。此后,人们对于这种量化方法的热情也开始跌宕起伏。
通常,互联网被大数据倡导者作为成功的数据业务的范例,这其中以谷歌为代表。而如今,许多大数据技术,如数学模型、预测算法和人工智能软件等已被华尔街所广泛应用。
在本月的麻省理工学院大会上,当被问及大数据领域一些重大失败案例时,几乎没有人能够说出这样的失败案例。后来,麻省理工学院斯隆管理学院(Sloan School of Management)教授罗伯特莱格伯恩(Roberto Rigobon)称,金融危机毫无疑问影响了数据业务。他说:对冲基金在全球都是失败的。
问题是,数学模型是一种简化。这种模型源自自然科学,根据物理定律,流体中的粒子行为是可以预测的。
在如此众多的大数据应用中,一个数学模型通常附带关于人类行为、兴趣和偏好的精确数据。这种方法在金融等领域的危险性也是有目共睹,美国哥伦亚亚大学金融工程学系主任曼纽尔德曼(Emanuel Derman)在他的书中《Models. Behaving. Badly》中就详细阐述了其危险性。
纽约创业公司Media6Degrees首席科学家克劳迪娅珀利彻(Claudia Perlich)称:你可以用数据来欺骗自己,我担心大数据出现泡沫。珀利彻担心许多人将自己称为数据科学家,但并未做足功课,反而给该领域抹黑。
珀利彻认为,大数据似乎将面临劳动力瓶颈。她说:我们的技能提升速度还远不够。麦肯锡全球学会(McKinsey Global Institute)去年发布的一份报告显示,美国需要14万名至19万名具有深度分析经验的工作者,以及150万名更加精通数据的经理人,无论是已退休人士还是已受聘人士。
哈佛商学研客座教授托马斯达文波特(Thomas H. Davenport)正在写一本名为《Keeping Up With the Quants》的新书,旨在帮助经理人来应对大数据挑战。达文波特认为,管理大数据项目的一个重要部分是要问正确的问题:如何定义问题?你需要哪些数据?来自哪里?等等。
谷歌调研(Google Research)高级统计师雷切尔查特(Rachel Schutt)称,如果建模人员能够思考伦理维度(ethical dimensions)等问题,那就会更好地服务于社会。查特说:模型不仅仅是预测,它们还可以让事情真正发生。
模型能够创建数据科学家所谓的行为循环(behavioral loop),如果一个人被提供足够的数据,都能对自己的行为进行指导。
以Facebook为例,将个人数据上传到自己的Facebook页面,Facebook的软件就会跟踪你的点击和搜索。通过算法来评估这些数据,然后再提供好友的建议。
但这种通过软件跟踪用户的行为却引发了隐私担忧,难道大数据将迎来数字监控的到来?
我个人最大的担忧是,当前确定我们个人数字世界的算法过于简单,不够智能。这也是艾利帕里瑟(Eli Pariser)所著《The Filter Bubble: What the Internet Is Hiding From You》所探讨的问题之一。
令人鼓舞的是,像珀利彻和查特这些有思想的数据科学家意识到了大数据技术的局限和不足。他们认为,听取数据是重要的,但经验和直觉同样重要。
在麻省理工学院大会上,查特被问及如何才能成为一名优秀的数据科学家,她说,需要计算机科学和数学技能,拥有好奇心,具有创新意识,以数据和经验为行动准则。她说:我不会把机器神化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27