京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据更是一种技术性战略资源_数据分析师
创新驱动发展战略是广东经济发展的“核心战略”和“总抓手”,科技创新是创新驱动的核心。大数据技术正在带来一次革命,大数据不仅意味着海量、多样、迅捷的数据处理,更是一种新的生产要素、一种创新资源和一种新的思维方式。大数据可以从产业结构、传统制造业升级、商业组织、“互联网+”和“大众创业,万众创新”等方面影响经济增长方式,助推创新驱动发展。
大数据技术,绝不仅仅是信息技术领域的变革,更是一种技术性战略资源,它使各种物质生产要素因新技术的介入而提高创新能力,形成内生性增长。
一、作为一种新的生产要素,大数据技术促进经济结构转型
大数据推动经济增长的积极作用,不仅意味着更高水平的生产力,还意味着经济结构的转型。
其一,与大数据时代对应的经济结构是智能经济。智能经济是以人脑智慧、电脑网络和物理设备为基本要素构成的经济结构和增长方式。大数据时代必将催生很多创新产业,重构甚至颠覆某些行业传统的产业链。
其二,大数据可推动突破性技术的研发,促进企业创新,改变产业格局。大数据的核心是预测,精准预测建立在对大量结构性和非结构性数据进行相关性分析的基础上。企业可以利用大数据研发其他领域的专业技术,为企业技术创新提供广阔空间,而这些新技术具有突破性,拥有改变整个产业格局的潜力。
其三,大数据服务渗透到传统行业,推动传统产业升级
大数据的应用对产业结构优化具有积极影响。目前大数据最大的应用前景是在传统产业。一是因为几乎所有传统产业都在互联网化,二是因为传统产业仍占据了GDP的大部分份额。大数据已经与社交媒体、电子商务、广告营销、金融等行业发生紧密的融合,专业化的大数据服务已开始渗透到农业、建筑、能源、体育、餐饮、音乐等传统行业,挖掘数据价值,改造和优化传统行业的企业管理、产品服务设计、商业模式等环节。这一趋势在未来将会得到进一步强化,并将极大推动传统产业的升级。
二、用大数据开启创业时代
大数据分析的好处是在海量样本的基础上使分析大数据的技术门槛降低。此外,大数据技术在萌芽阶段就是开源技术,无偿供给全世界的开发者使用,后续包括Hadoop等底层技术均为开源性质,也没有任何专利门槛。在舍恩伯格看来,“算法”可撬动大数据的创业时代。也就是说,只需要拥有对于数据分析的思路也即一套“算法”,创业可以有很多新的可能。首先,你不需要是统计学家、工程师或者数据分析师,就可以轻松获取数据,然后凭借分析和洞察力开发可行的产品。其次,将众多数据聚合,或者将公共数据和个人数据源相结合,新数据组合能开辟出产品开发的新机遇。第三,大数据服务有利于创业公司的涌现。订阅式定价模式是未来大数据服务的方向,即顾客无需维护硬件、电源和工程维修资源,服务完全根据顾客的需要而定:顾客有需要时,就可以使用更多功能;不需要时,功能就会减少。大数据服务的优势在于,顾客只为使用的东西消费。这尤其对创业公司有利,它们可以避免高昂的先期管理服务器和存储基础设施的投入。
三、作为一种新的思维方式,大数据思维引发科研方式的变革,促进科技创新能力的提高
过去我们认识世界的方式主要是通过“因果关系”,现在又多了一个方法—“相关关系”。大数据分析形成的“相关关系”为我们认识世界提供了一种新方法,引起科研方式的深刻变革,形成创新的新动力。
大数据技术的一个重大意义在于其能够影响科学研究本身的发展,使科学从过去的假设驱动型转化为数据驱动型。传统科研方法大都采用假设和验证的方法来分析问题产生的原因,进而寻求解决途径。应用大数据技术,人们开展科学研究不再是从提出自己的假设出发,而是先进行数据分析,然后再提出科学假设。大数据时代,知识技术创新模式正在从这种求因果向重相关发生转变,各领域的科研人员可以充分利用大数据快速挖掘事物间的相关性,预测事物发展的方向和趋势,从而实现知识技术创新。
对许多科学与工程学科领域而言,大数据技术能推动大学和工业实验室的基础研究,能加快取得新发现的速度。在推动信息技术的进步上,大数据技术更是起到重要的直接作用。为了应对大数据技术提出的挑战,科学家和工程师们必须要在信息技术领域作出重大创新:需要开发能以更高的速度处理如此复杂的海量数据的高性能计算技术;要求数学家和统计学家开发能够分析这些数据的新算法;要求数据分析专家运用新的技术从数据中“萃取”更大的、甚至意想不到的价值。
四、数据开放激发社会的创新活力
数据开放,可充分利用蕴藏着的社会能量,调动大众的智慧。数据是知识生产和创新的资源,通过互联网开放数据,就是将原来由部分社会精英垄断的知识和创新资源,开放给大众,进一步调动大众智慧,推动大众创新。每个人贡献一点点,大数据就可能还原事件的真相,或者推动某种创新。例如,开源项目、开源社区、开放性创新联盟组织的兴起,有效降低了产业技术的壁垒,推动更多的创业者介入。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16