
大数据更是一种技术性战略资源_数据分析师
创新驱动发展战略是广东经济发展的“核心战略”和“总抓手”,科技创新是创新驱动的核心。大数据技术正在带来一次革命,大数据不仅意味着海量、多样、迅捷的数据处理,更是一种新的生产要素、一种创新资源和一种新的思维方式。大数据可以从产业结构、传统制造业升级、商业组织、“互联网+”和“大众创业,万众创新”等方面影响经济增长方式,助推创新驱动发展。
大数据技术,绝不仅仅是信息技术领域的变革,更是一种技术性战略资源,它使各种物质生产要素因新技术的介入而提高创新能力,形成内生性增长。
一、作为一种新的生产要素,大数据技术促进经济结构转型
大数据推动经济增长的积极作用,不仅意味着更高水平的生产力,还意味着经济结构的转型。
其一,与大数据时代对应的经济结构是智能经济。智能经济是以人脑智慧、电脑网络和物理设备为基本要素构成的经济结构和增长方式。大数据时代必将催生很多创新产业,重构甚至颠覆某些行业传统的产业链。
其二,大数据可推动突破性技术的研发,促进企业创新,改变产业格局。大数据的核心是预测,精准预测建立在对大量结构性和非结构性数据进行相关性分析的基础上。企业可以利用大数据研发其他领域的专业技术,为企业技术创新提供广阔空间,而这些新技术具有突破性,拥有改变整个产业格局的潜力。
其三,大数据服务渗透到传统行业,推动传统产业升级
大数据的应用对产业结构优化具有积极影响。目前大数据最大的应用前景是在传统产业。一是因为几乎所有传统产业都在互联网化,二是因为传统产业仍占据了GDP的大部分份额。大数据已经与社交媒体、电子商务、广告营销、金融等行业发生紧密的融合,专业化的大数据服务已开始渗透到农业、建筑、能源、体育、餐饮、音乐等传统行业,挖掘数据价值,改造和优化传统行业的企业管理、产品服务设计、商业模式等环节。这一趋势在未来将会得到进一步强化,并将极大推动传统产业的升级。
二、用大数据开启创业时代
大数据分析的好处是在海量样本的基础上使分析大数据的技术门槛降低。此外,大数据技术在萌芽阶段就是开源技术,无偿供给全世界的开发者使用,后续包括Hadoop等底层技术均为开源性质,也没有任何专利门槛。在舍恩伯格看来,“算法”可撬动大数据的创业时代。也就是说,只需要拥有对于数据分析的思路也即一套“算法”,创业可以有很多新的可能。首先,你不需要是统计学家、工程师或者数据分析师,就可以轻松获取数据,然后凭借分析和洞察力开发可行的产品。其次,将众多数据聚合,或者将公共数据和个人数据源相结合,新数据组合能开辟出产品开发的新机遇。第三,大数据服务有利于创业公司的涌现。订阅式定价模式是未来大数据服务的方向,即顾客无需维护硬件、电源和工程维修资源,服务完全根据顾客的需要而定:顾客有需要时,就可以使用更多功能;不需要时,功能就会减少。大数据服务的优势在于,顾客只为使用的东西消费。这尤其对创业公司有利,它们可以避免高昂的先期管理服务器和存储基础设施的投入。
三、作为一种新的思维方式,大数据思维引发科研方式的变革,促进科技创新能力的提高
过去我们认识世界的方式主要是通过“因果关系”,现在又多了一个方法—“相关关系”。大数据分析形成的“相关关系”为我们认识世界提供了一种新方法,引起科研方式的深刻变革,形成创新的新动力。
大数据技术的一个重大意义在于其能够影响科学研究本身的发展,使科学从过去的假设驱动型转化为数据驱动型。传统科研方法大都采用假设和验证的方法来分析问题产生的原因,进而寻求解决途径。应用大数据技术,人们开展科学研究不再是从提出自己的假设出发,而是先进行数据分析,然后再提出科学假设。大数据时代,知识技术创新模式正在从这种求因果向重相关发生转变,各领域的科研人员可以充分利用大数据快速挖掘事物间的相关性,预测事物发展的方向和趋势,从而实现知识技术创新。
对许多科学与工程学科领域而言,大数据技术能推动大学和工业实验室的基础研究,能加快取得新发现的速度。在推动信息技术的进步上,大数据技术更是起到重要的直接作用。为了应对大数据技术提出的挑战,科学家和工程师们必须要在信息技术领域作出重大创新:需要开发能以更高的速度处理如此复杂的海量数据的高性能计算技术;要求数学家和统计学家开发能够分析这些数据的新算法;要求数据分析专家运用新的技术从数据中“萃取”更大的、甚至意想不到的价值。
四、数据开放激发社会的创新活力
数据开放,可充分利用蕴藏着的社会能量,调动大众的智慧。数据是知识生产和创新的资源,通过互联网开放数据,就是将原来由部分社会精英垄断的知识和创新资源,开放给大众,进一步调动大众智慧,推动大众创新。每个人贡献一点点,大数据就可能还原事件的真相,或者推动某种创新。例如,开源项目、开源社区、开放性创新联盟组织的兴起,有效降低了产业技术的壁垒,推动更多的创业者介入。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28