京公网安备 11010802034615号
经营许可证编号:京B2-20210330
广东具备加快发展 大数据产业的基础和条件
一、缺乏高质量的数据,直接影响大数据的价值实现
其一,对大数据的理解和重视程度远远不够。长期以来,我们的文化基因当中,数据文化很弱。没有把数据作为一种方法论,作为一种价值观,作为一种社会运转尺度来看待。
其二,丰富的数据源是大数据产业发展的前提。目前数字化的数据资源总量远远低于美欧,其中政府和制造业的数据资源积累远远落后于国外。就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这大大降低了数据的价值。
其三,数据共享程度低。政府、企业和行业信息化系统建设往往缺少统一规划和科学论证,系统之间缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度较低,以邻为壑、共享难,这给数据利用造成极大障碍。
其四,政府业务数据库公开的广度和深度都有限。各级政府已实行网上政务信息公开,不过,主要是行政事务性信息的公开;实时的政府业务数据库公开尽管已经取得进步,但是,政务业务数据库中的很多数据目前还没有实现公开,很多数据因为部门利益和“保密”等因素,仅限于部门内部人员使用;已经公开的数据仅限于一部分基本信息和统计信息,更多数据还没有被公开。
二、缺少稳定可靠的公有云基础设施平台,不足以支撑企业创新和大众创业
首先,自主研发能力限制了公有云平台的发展。美国以Amazon为代表的IaaS服务商构建了生机勃勃的公有云生态系统,不过,我们是以私有云的建设为主。因为公有云的建设一定要自主研发才能做到,必须具备核心的技术能力,没有现成产品可以使用,没有任何捷径可走,而私有云的建设可以采购美国公司的成熟产品。
其次,云计算的基础技术方面,美国是领导者,包括服务器虚拟化、网络技术、存储技术、分布式计算、OS、开发语言和平台等核心技术基本上都掌握在美国公司手中,我们的产品开发大多数是两个路径,一是在美国开源软件基础上修改使用,二是产品引入销售,包装后形成解决方案。近10年来,虽然有腾讯、华为、中兴等公司在大力投入研发资源,很多创业公司也在进行技术研发,但能够真正掌握核心技术的云计算公司还是太少,积累依然不足,很难形成主导性的产业链。
第三,公有云的安全问题导致众多大中型企业对公有云的使用存在安全疑虑,因为企业数据上传到公有云就一定程度上失去了对数据安全的控制力。
三、大数据的技术影响力仍然有限
大数据的市场发展前景是非常广阔的。自2013年以来,大数据每年的市场发展增长率都在百分之百以上。不过,目前大数据还没有形成普遍应用的局面。
大数据应用基本上还是发散状,并没有形成燎原之势,应用也主要集中于互联网营销场景。大数据现有技术水平的主要受益产业仍然是云计算和各类基于云计算的商业模式,在信息基础设施普及率、社会开放性以及与网络智能交互技术的结合度没有达到一定能级时,大数据的应用是有限的,达不到面向社会的“无所不能”。
四、支撑数据服务的大数据产业链有待完善
大数据价值的实现需要一条成熟的大数据产业链给予支撑。
广东已具备加快发展大数据产业的基础和条件,大数据产业链也正在加速形成。作为一个独立的产业来看,大数据的产业体系能够应对绝大多数的产业应用需求。不过,存在以下问题需要解决,一是,在建设重点上,企业侧重于物理上数据存储能力建设,纷纷推出了各自数据中心项目,通常以容量来衡量成就,而国外企业则主要侧重分析工具手段和围绕用户的解决方案开发。二是,在建设方式上,广东企业往往采取“各自为战”、“平地起楼”的建设方式,从基础层面分头进行大数据存储或处理的开发。国外企业却多采用收购兼并、合作开发多种方式来进行建设,推进大数据存储、处理、分析综合发展,而不偏于一隅。三是,大数据面临巨大的安全性挑战,企业、个人数据的隐私保护,需要相应的核心技术来保障。四是大数据面临着有效存储、快速读写、实时分析等挑战,将对芯片、存储产业的发展产生影响。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29