
传统经济统计的大数据化_数据分析师
大数据的影响不仅仅局限在商业领域,它对于经济信息统计和指导政策制定都有促进作用。简单地讲,相对于传统经济统计而言,大数据引发的变革主要表现在四个方面:更快、更准、更广、更细。这些特性有益于未来行业政策和宏观经济决策。
时下,一场以大数据为核心的商业变革正在兴起。从搜索引擎、社交网络、电子商务平台等IT企业,到电信运营商、航空公司、物流企业,再到医院、超市、饮料制造等传统企业,由大数据引发的商业变革如火如荼。
众多的企业实践和研究案例表明,数据分析在广度和深度上的拓展能够帮助企业增强竞争力,提升盈利能力。不过大数据对经济的影响绝不仅仅停留在微观企业层面和商业领域,它在经济信息统计和指导经济政策制定等方面也将发挥重要作用。
传统经济统计的大数据化
随着计算机和互联网的普及和电子商务的发展,越来越多的经济行为被记录下来。传统意义上,经济统计一般只细分到产品、行业层面,通常以月为频率;条形码出现后,记录可以具体到每一次交易行为;而对于淘宝、亚马逊[微博]等网上购物平台,能被记录的则不仅仅是交易行为,还包括消费者从搜索、对比、选择、购买、一直到售后评价等一系列操作都会被记录。事实上,电信、医疗、物流等其他行业,都在实现更详尽的记录。
传统的经济统计工作在未来将大数据化——以往生产统计更多地停留在行业层面(或局限于规模以上企业),而未来可能是针对所有企业;传统的消费统计主要基于抽样调查,而未来可能具体到每个家庭或个人;传统的价格统计(比如通常所说的“CPI指数”)中仅包含千种商品、涉及几万个调查销售网点,而今后可能是几万种商品、所有的在线销售商和大部分线下销售网点。随着大数据技术的成熟,“样本即总体”将成为趋势,抽样变得越来越不重要。
相对于传统经济统计来说,大数据引发的变革主要在四个方面:时效性提高,记录更加准确,覆盖的经济行为面更广,对单次经济行为的记录更加精细。简单地讲就是:更快、更准、更广、更细。
麻省理工大学斯隆管理学院的两位教授正在主持一项名为“百万价格工程”的研究计划。他们通过搜集互联网上不同国家各种零售商品的价格数据,编制了各国的“在线价格指数”。
谷歌[微博]和百度[微博]先后推出了基于互联网搜索频率的“谷歌指数”、“百度指数”,将互联网用户对特定关键词的搜索量通过统计学方法编织成指数,用来反映大众对于该关键词关注度的变化趋势。
阿里巴巴[微博]推出了基于淘宝电商平台的“iSPI”系列指数,这些指数以网络交易的实时数据为基础,能够反映食品、烟酒及其用品、衣着等十个商品和服务类别的网络零售价格和交易量的变化趋势;可以辅助洞悉通货膨胀、经济增长、居民消费等宏观经济指标。
大数据指导经济政策制定
传统经济统计数据有两个缺陷:一是存在滞后性,二是低频率。而大数据可以在这些方面作出改进。例如:各国消费者物价指数(CPI)的发布一般都存在滞后期,以我国为例,通常要等到下个月的9号左右才发布上月CPI数据;而“在线价格指数”是对市场价格的实时跟踪和汇总,不存在滞后性,从而能为货币政策提供更为及时的信息。
同时,在线价格指数可以做到以天为频率、甚至更高频率,从而能用来更细致地分析通货膨胀规律和定价行为。还有研究发现,该指数与资本市场走势具有相关关系。
另外,传统经济统计的思想是以样本表征总体,可能出现偏差。而大数据时代的经济信息统计包含的样本量大,甚至可以覆盖全部总体,从而包含更多的信息量。例如,通过对比在线价格指数和官方CPI可以发现:美国的在线价格指数与官方发布的CPI契合地很好;而对于阿根廷,在线价格指数系统性地大幅高出官方发布的通货膨胀率。
在行业层面,大数据也能发挥作用。笔者曾在一篇学术论文中证实:互联网搜索引擎频率数据对中国汽车市场的需求量具有很强的预测力;笔者构建的基于互联网搜索量的“中国汽车需求先导景气指数”不仅能够提高销量预测的精度,还能够增强预测的时效性。
另外,随着大数据相关技术的成熟,公共部门和私人企业过去积累的大量“垃圾”数据有可能重新焕发光彩。比如用微观居民和企业用电量数据指导智能电网建设、用交通事故和犯罪数据指导警力布局、用消费和税收数据指导收入分配、用客流量数据指导铁路和民航调配、用互联网关键词传播数据进行流行病预防等等。
需要指出的是,大数据之于传统经济统计,是补充,而非替代。基于抽样、调查、汇总等程序获得的数据仍将在经济分析和政策制定中发挥重要的作用。横向来看,传统统计方法在经济增长、税收、贸易、收入分配等领域的统计上具有主导优势,而大数据在物价、通货膨胀、失业率、消费等方面的统计上更具有优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28