
解读《大数据时代》:复杂世界的数据观_数据分析师
《大数据时代》给出的大数据时代的第二个特征,是“不是精准性,而是混杂性”。这是一个相当难以理解的分割方式。虽然看一个个的案例,读者似乎明白了,可是放下书,却又疑上心头:为什么大数据时代不要精准性?精准性与混杂性之间有必然的对立关系吗?
如果说第一个特征中的“随机样本”和“全体数据”(记得实际是数据库的概念)的概念我们还能够从迈尔大叔的叙述中得以澄清,这里的“精准性”和“混杂性”就要认真考证了。
何为精准性?
迈尔大叔有关精准性的论断,应该是对小数据时代数据匮乏的藐视:你们这帮屌丝,撅着屁股捡钢镚,俺们土豪100元从来都不要找零的!小数据时代数据少啊,每个数据都当个宝,斤斤计较数据的精度。
“执迷于精确性是信息缺乏时代和模拟时代的产物。在那个信息贫乏的时代,任意一个数据点的测量情况都对结果至关重要。所以,我们需要确保每个数据的精确性,才不会导致分析结果的偏差。”
我们来看看迈尔大叔提供的有关精准度的案列,后面讨论用得着。
1)量子力学的”测不准“原理;(测不准即不精准,可这和大数据时代哪是哪儿呀?)
2)桥梁压力检测数字增加1000倍,错误率也会增加;(怀疑“错误率”是“错误数”的表达错误。错误率是错误的比例吗?如果错误率随着数据数量的增加而增加,那大数据还会准确吗?或许我真的被大数据时代OUT了。)
3)语音识别呼叫中心投诉的错误;(终于能够理解一个案例了!)
4)葡萄园N个温度计测量温度;(这是通过统计增强精准度。)
5)Forrester认为“有时得到2加2约等于3.9的结果,也很不错了。”(没有背景资料,不敢妄加判断。不过总觉得心悬悬的,你是否担心生活在一个“2加2可以约等于3.9”的社会里呢?)
6)微软研究中心寻求改进Word程序中语法检查的方法;(这是利用大数据来改进分析的精准性!)
7)BP炼油厂无线感应器网络数据;(又是一个大数据降低统计误差的案例。)
8)Facebook上的“4000个赞”和Gmail“2小时”计时;(神一般的大数据及其不精准性说明。)
9)Hadoop与Visa的算法。(这是一个如何牺牲分析结果的精准性以缩短所需分析时间的案例。回到迈尔大叔有关大数据时代的第一个特征,即使有了全体数据,必要时也要牺牲部分数据而争取时间。)
到此,可能能够理解为什么读这一小节这么困难了:迈尔大叔想告诉我们精准性不重要,可是他举的例子,却实在是有点“暧昧”不清。他究竟是想说数据的精准性还是数据分析结果的精准性呢?
何为混杂性?
“不是精准性,而是混杂性”。与混杂性所对立的精准性,原来不是迈尔大叔在描述精准性时以“2+2可以约等于3.9”时告诉我们的那个数据分析结果的精准性,而是数据的精准性。
“执迷于精确性是信息缺乏时代和模拟时代的产物。只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用,只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户。”
我们看到,在谈到大数据时代的混杂性时,迈尔大叔基本上都在谈论数据的混杂性(而不是数据的不精准性)。我们来看看混杂性的案例:1)对IBM称呼的混杂;2)谷歌翻译语料库;3)MIT研究项目;4)Flicker图片标签;5)新的数据库设计;6)ZestFinance。
说实在话,有关大数据时代混杂性的问题,因为有了前面对精准性的描述,一下子还真是被迈尔大叔给蒙住了,反复读了数遍,才理解。原来迈尔大叔所说的混杂性,是指数据格式的不统一。上面6个案例中,除ZestFinance外,基本上是讲数据格式的不统一或者数据来源纷杂。这的确是我们这个时代数据的特征。恭喜迈尔大叔终于说对了!
而ZestFinance则是指在数据不完整或者数据有错误的情况下如何处理数据的问题,这和大数据似乎没有太大的关系,与数据的混杂性也没关系。不过我们在此回忆一下,似乎除了随机样本问题外,迈尔大叔几乎不谈数据统计的技术细节。比如说,ZestFinance是如何处理数据缺失以及数据错误的呢?我真的很好奇。
精准性与混杂性的辩证
一般来说,“不是....。.而是....。.”的语句,应该是指同一事物的不同状态。比如“不是晴天而是下雨”,或者“不是田埂而是小溪”。如果你来一句“不是晴天而是小溪”,就显得难以理解了。
就统计学角度来看,数据的精准性是一回事,数据的不同格式(混杂性)是另一回事。格式混杂的数据,通过处理或许是能够精准的。
格式混杂的对立面是数据格式的统一。格式统一的数据或许可能也是不精准的。比如说迈尔大叔所列举的葡萄园测量温度以及BP炼油厂的感应数据。
另一方面,就精准性而言,数据的精准与数据分析结果的精准也是两个不同的概念。比如说,“2+2约等于3.9”是数据分析结果的不精准,而葡萄园温度测量和BP炼油厂的无线感应器网络数据的例子,则是指数据不精准但是因为数据多而克服了少量数据不精准的缺陷而使数据分析结果比较精准。
数据格式的混杂与统一,数据的精准与数据分析结果的精准,迈尔大叔都胡子眉毛一把抓了。
怎么理解大数据时代是十分重要的。大数据时代的特征是“一切皆为数据”,那么数据来源的多样性以及数据格式的混杂性确实成为一个大数据时代显著的特征。但是,这个特征的对立面,可能更应该是数据来源以及数据格式的单一性。
数据的混杂性需要更成熟的分析手段来分析,分析的结果也可能不像我们传统的那样丁是丁卯是卯。但这些应该是数据分析师的工作,而不是我们这样的屌丝们所需掌握的本领。
或许,我们可能更应该从屌丝的角度来归纳大数据时代的特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28