
P2P大数据的争议与悖论_数据分析师培训
作为互联网金融的一种模式,P2P行业如何发展一直是舆论的焦点。其中最被大家推崇的一种观点是P2P的发展必须结合大数据,无论监管、媒体、还是我们从业者,都达成了共识,许多公司为之努力并且做了尝试。但是我却认为,P2P不能迷信大数据,大数据并不是万能的,与其执着于用大数据做风控,不如用来做营销。
一、P2P的大数据为什么做不了风控?
目前,在国内金融领域,用大数据做风控,成功的案例只有两家,一家是阿里小贷,另一家是证监会。阿里小贷通过卖家海量的交易信息和流水,在几秒钟内完成对商家的授信;证监会通过海量的交易信息挖掘出关联交易,捕捉老鼠仓的基金经理。也有其他一些电商平台号称利用大数据做风控审核,但是其模式的实质是应收账款质押融资(类似保理)或者是货物质押式融资。其实阿里和证监会之所以成功,原因在于两点,一、数据可以做到即时更新,既数据是鲜活的;二是平台本身对用户有约束力。这两点也被人们称为闭环的数据。那么问题就来了,目前国内的P2P公司并没有闭环的交易数据,对用户的约束力也不足够,那么又何来跟大数据结合一说呢?
有人说利用客户多维度的信息,例如近千个维度,对借款人做综合的评估。这种方式听起来不错,但实际情况是,对一个人信用的评估如果用这样的手段,会发现维度和维度之间并非相互独立的,而是有逻辑关系的,1000个维度中实际有用的维度可能只有100个,900个是没用的,也就是说这样一个风控模型几乎是建立不起来的,纬度的逻辑关系会有冲突,就算真的建立起来了,能通过该模型验证的也极可能是人格完美的人,例如耶稣和甘地,而不是金融信用良好的客户,不同的数据纬度应该对应一个人不同的方面,绝大多数的纬度根本体现和一个人金融信用的相关性。
再说数据来源,有一种说法是互联网上的社交数据可以作为参考依据,这其实牵涉到两个问题。其一,在互联网上人性是被放大的,现实中不敢说的话,在网络上却敢说,现实中内向的人在网络上或许会非常外向。也就是说互联网上的社交信息很难还原现实中人的信用;其二,社交信用并不一定能代表金融信用。据征信公司根据以往的征信记录来看,人的信用是多方面的,例如朋友信用、爱情信用、事业信用、其他社会信用和金融信用等,如果把每一类信用都看成一个面,其他几个面的信用与金融信用并不一定存在相关性。最近我去英国考察,国外有朋友用facebook上的社交数据做金融的尝试,即利用互联网上的个人信息评估其信用,并作授信。目前这项服务的相关数据还未披露,但是通过一些国外的朋友间接打听,网络上的社交金融可能并不成功,原因就在于此。
二、P2P的大数据如何做创新?
如果说P2P执着雨打数据风控,不如尝试用大数据做营销。事实上,大数据的提出者谷歌就是利用大数据做营销的。打比方说,现在新新贷有一位借款用户,如果他的借款次数在2次以上,且还款情况良好,可以通过数据分析,我们可以用系统的方式为他量身定制贷款方案,利率、手续费、还款方式、期限、额度等都会和原来的服务不同。
这个看似简单,背后要做的工作很多,首先要看过往的借款记录,新新贷会通过他的以往数据信息推算出他在什么时间节点需要资金周转,例如一个借款人申请借款的时间是8月,但可以通过计算得知他资金周转其实发生在6月,再分析数据,是因为5月份的货物滞压造成,再进一步分析造成货物滞压的原因。贷后管理中,客户经理会了解借款人的经营情况,根据更新过的数据,利用系统的方式推算出可能造成他下一次资金周转的时间,提前推送定制的服务方案。这种服务方案更像量身定制,而非让客户被动接受他不一定适合的信贷产品。在服务方案的制定过程中会根据他的年龄、学历、所在地区、交易流水等情况和数据库中类似的借款人做对比分析,评估他的优势劣势,和同行业企业的相似程度,根据以往借款人的额度、利率、还款方式等信息,重新评估当下借款人的额度、利率、还款方式等等。目前,我们已经尝试了几个这样的服务方案,做到了客户自己还没有发觉有融资问题是,我们就提前推送服务。
三、没有大数据,还能做数据挖掘
但是P2P最终还是希望用大数据完成授信和风险控制以降低服务成本。刚才已经谈到,那除非是用闭环的大数据才有可能,也就是说必须有数据即时更新和平台约束力两点。如果P2P无法直接做到这两点怎么办?我觉得可以通过其他的方式无限接近这两个特征。其一,不定期更新用户的数据,以我们来说,风控人员在客户贷后3个月后必须对客户进行2次尽职调查,对用户的信息做更新,重新评估其违约的概率。有人说这么做会增加成本,但P2P本来就在做商业银行和BAT都不做的脏活累活。对一家P2P公司来说,现在正处在数据原始积累的过程中,获取借款人越多真实数据越有利。未来P2P的核心竞争力与其说是风控能力,不如说是数据的积累和数据的处理能力。
另一方面,小微企业客户的账目往往混乱,在实际的风险控制中还需要还原他们的资产负债表和现金流量表,对他们进行财务输出,建立财务的标准,这些标准的信息积累就为数据积累做好了度量衡统一的准备。这些工作看似不够互联网化,不够科技化,但是只有这样的工作才能获得用户精准的数据,有效的数据,否则用系统的手段处理,就会在大量的洗脏数据的过程中,增加机会成本。
我个人认为,与其执着于在线上获取数据,不如脚踏实地在线下做好借款人的数据分析。例如,我们在数据积累的过程中,发现抽烟的借款人逾期率高于不抽烟的人,有宗教信仰的借款人逾期率低于没有宗教信仰的借款人,世界杯期间看足球的借款人违约率高于不看足球比赛的借款人。借款人的这些信息和数据几乎是没办法在线上获取的,即使获取也无法核实真伪,但是通过线下实地走访,这些信息很容易获得。这些有参考价值的数据对大数据和风险控制结合是有帮助,排除对借款人最有影响的地区、行业等因素,用户自身的一些行为是否存在相关性,是对风险控制审核的重要参考。
P2P结合大数据的路还很漫长,目前国内还没有成功的案例,大数据对P2P来说首先用于营销,其次用于风险控制,在数据的积累过程中去做更多深入的挖掘,可能才是真正的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03