
关于大数据,你不知道的6个迷思_数据分析师
过去两年,在 Netflix 以行为分析为基础打造的美剧 House of Cards 《纸牌屋》爆红的同时,大数据也成了现代企业经营的显学。无论是消费、金融、电信、交通,甚至是政治、慈善,所有的研讨会上,一定可以看到大数据的身影。似乎人类组织有史以来的行销、管理等问题,有了 Data,全部都可以解决。
事情当然没有那么简单。就像任何新科技一样,大数据并不是万灵丹。要善用它,必须要从对的观念出发。今天就跟大家聊聊关于 Big Data,我最常听到的 6 个迷思。
1. 大数据是新时代的新玩意
事实上,数据分析一点也不新。早从数百年前的启蒙时代,学者们便已开始遵循科学方法,一步步拆解事物形成背后的原因。科学家先观察,取得并分析数据,归纳出假说,然后再经过不断实证,逐渐形成定律。因此我们说的大数据,充其量只是科学方法的应用。跟过去的科学家相比,现代大数据更多仰赖机器去做观察与取得数据的工作,以求更全面、更即时的资料收集。但后续的推论、归纳工作,还是需要人为的判断。
2. 100TB 以上才叫大数据
数据的大小,事实上没有明确的界线。更重要的,数据的大小,不一定有意义。数据大,也不代表一定能做出準确的预测 ─ 假设你拥有地球 70 亿人口的姓名、性别、生日、身高、体重、肤色、视力,以及他们的上网行为等种种数据,如果题目是要预测他们明年的收入分布,这个庞大的资料库,恐怕还是无法帮上你什么。所以数据在精不在多,重点是要达成的任务,不是储存的数量。
3. 数据非常客观
采集数据的软硬件,是人为设计的,因此不可能做到绝对的客观。手机停留在某个画面,就代表你在欣赏这个内容吗?很难说,或许你只是在跟旁边的朋友聊天。对某个发文点赞,就代表你真心喜欢这则资讯吗?也很难说,说不定只是喜欢发文的人,或是手滑不小心按到。真实世界,永远有测不准的环节,因此设计数据采集软件的人,很难绝对客观的去记录使用者行为,所以产生出来的数据,也很难是完全客观的。对于大数据,你该有的认知是它有相当、相对的客观性,但不可能绝对准确。
4. 数据可以告诉你不知道的内幕
就像字面显现的,数据只能告诉你不知道的数据。但它究竟代表什么样的内幕,必须要靠归纳者自行去解读。举例来说,分析你的 App 使用者资料后,发现 21-30 岁女性族群占比最大,这可能代表着你的 App 对这种人最有吸引力,但也可能代表当初推广团队在发广告时,比较针对这样的族群。究竟事实是什么?往往需要更进一步的综合比较、实验分析,才能逼近。
5. 大数据是资讯部门的问题
大数据的收集与储存,的确可以归类为资讯部门的业务。但定义该收集什么,如何收集,收集后该如何应用,绝对是业务主导部门该负责的。要求 IT 部门把大数据做好,就好像要求财务部门提昇公司获利一样,是本末倒置的。
6. 大数据会改变一切,不懂数据的人将会被淘汰
数据的重点不是数据,而是解读与预测,也就是用数据验证人类的行为模式,用以提升产品与服务的设计,与潜在、现有客户沟通的方法与内容。因此,懂数据不是重点,懂人才是。在全面连网的世界,数据将会越来越泛滥,懂数据收集管理的人也将会越来越普遍。但无论科技如何发展,懂人的人,恐怕永远是少数。人感性、容易受到环境影响,因此难以预期。
所以,大数据是社会科学重要的进展,但企业要精准抓住未来,经理人要拥有更好的决断力,还是要基于对不同人、不同性的理解,而不仅是科技工具的使用而已。大数据不是万灵丹,它只是涡轮加速器,至于方向盘,仍旧掌握在你的手上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19