京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据推动汽车产业融合发展 催生技术变革
近年来,电子信息领域新技术发展迅速,物联网、云计算、大数据、移动互联等新技术正在向传统行业渗透,在汽车和交通等行业,与此相关的车路协同系统、出行智能化便捷服务、车联网等成为目前发展的热点技术,并正在引起行业巨大的变革。
4月9至10日,“2015中国汽车产业数据研究峰会”在天津举办。峰会以“大数据推动汽车产业发展”为主题,围绕大数据时代下的汽车产业发展、跨行业多角度数据交流、汽车产业可持续发展等议题展开讨论。
传统的汽车行业数据来源不畅、结构单一、应用较浅,无法满足企业的数据需求。而互联网、移动互联技术的快速普及,正在诸多方面改变着人们的车辆购置和使用习惯,使传统的汽车数据收集、分析和利用方式发生重大转变。
“大数据时代的来临给汽车产业带来的是电动化、轻量化、智能化、网络化的相互融合。”中国智能交通协会会长吴忠泽认为,“大数据产业在经历了数据爆发式增长的大数据1.0时代后,开始进入了以大数据中创造实际价值为标志的2.0时代,技术日趋精细,专业服务日益多样。”
数据收集
车企、经销商、互联网及消费者等多渠道的数据收集方式日趋完善。车企大数据包括客户信息、交易信息、车辆信息、生产信息、采购信息、维修信息、投诉信息等。经销商通过移动互联、后台音频整理、证照识别录入等新技术的使用,实现从消费者“关注”到“消费”整个过程核心行为要素的实时监测,确保消费者入店行为数据的全录入,同时监测车辆4s店维修保养信息。
通过统计微博、峰会、网页等互联网大数据,企业可以监控客户进入首页,查看车辆详情及停留时间,洞察客户对车辆的关注点和走势,掌握不同客户的潜在需求及预期,监控产品舆情反馈等等。
在消费者方面,车联网将对客户使用车辆的信息进行监测,包括车主行为数据,车况数据,位置数据,驾驶数据等。
数据分析
数据分析需要将多渠道、标准不一的客户数据进行整合,建立汽车大数据库,主要分六步:数据融合、用户识别、全网用户识别、用户标签、用户聚类、用户细分。
数据融合是把分散在不同系统之间的数据整合在一起,包括生产数据、销售数据、售后数据、互联网数据等;用户识别是通过数据清洗,识别出每个客户的详细信息。全网用户识别是采集客户的网上行为数据,进行全网客户识别,产生360度全方位客户视图;用户标签是将每个客户的特点、爱好、生活习惯,进行细致区分,并以标签化进行用户定义;用户聚类是指根据客户的标签进行分组;用户细分是对客户完成精准细分,针对目标客户开展一对一精准营销。通过这六步即建成统一、整合、可直接使用的数据库。
数据利用
汽车行业对互联网、大数据等新兴科技的利用涉及到产业链的各个环节,包括:用户洞察、开展精准营销、改善客户管理及服务、改善产品研发和提升产品质量、业务运营监控、汽车后市场、交通领域、汽车流通等方面。通过对多渠道的汽车大数据进行融合及挖掘,能够深刻地了解客户需求及动向、掌握客户信息、进行市场细分、竞争分析、掌握客户满意度等。大数据还可用于开展精准营销,通过整合汽车媒体、微信、等互联网渠道潜客数据,扩大线索入口,提高非店面的新增潜客线索量,并挖掘保有客户的增购、换购、荐购线索,从新客户和保有客户两个维度扩大线索池;运用大数据原理,定义线索级别并进行购车意向分析,优化潜客培育,提高销售线索的转化率,提升销量。
机遇与挑战
目前,汽车行业对大数据的收集、分析和利用仍处于探索阶段,在这个进程中面临着诸多挑战。
吴忠泽概括总结了四个方面:一是汽车厂商众多,相关数据检测方式多样,信息模式复杂,造成数据种类繁多,且缺乏统一的标准,各厂商的数据资源缺乏互通共享;二是在数据开放的同时,如何从法律和行政法规上确保和加强数据的安全监管,提高数据资源的安全性,尊重和保护相关政府部门、汽车制造商以及个人的机密和隐私不收侵犯;三是如何提升汽车数据资源的综合利用效率,将汽车相关数据信息进行有效地联系、汇聚和发展,改善汽车使用者的服务水平;四是,目前我们尚缺乏有效的市场化推进机制,基于汽车大数据的信息服务产业链、价值链尚未真正形成;五是前次和大数据缺乏顶层设计,汽车及相关产业的数据壁垒没有打通,丰富且分散的数据资源不能有效协调利用。
今后一段时间,中国汽车产业的一个重要发展方向便是迎接大数据时代的机遇与挑战,立足国情、运用新技术手段,结合智能交通系统建设发展,加快汽车大数据分析技术研发,促进汽车制造商的服务转型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12