京公网安备 11010802034615号
经营许可证编号:京B2-20210330
sas快速处理大数据的使用技巧
用sas在做数据分析时,有很多朋友会遇到和我一样的问题吧,数据分析师在这里分享一下。1.测试代码的时候,可以从大数据集中抽取一部分数据来进行测试,而不比直接在大文件上全部进行测试。抽取数据这个有好多种方法常用的如使用obs=option选项,proc surveyselect进行分层抽样,利用种子产生随机数来抽取等等,反正怎么方便怎么取。如
或者
2.每个数据集最好只保留自己想要的变量,变量太多是会影响效率的,所以无关变量可以drop掉,或者keep想要的变量。
3.在对符合已知变量条件的记录进行处理时,果断先进行筛选,然后在进行处理。同时在 Data步建立新数据集,在进行的条件筛选中,where的效率比if高,因为where在读入的时候就已经进行判断,而if则是等到全部读完的时候才进行判断。如需对class数据集中的男生建立一个新变量weight_new,以下这种写法是不可取的。数据分析师培训
可以这么写
4.一些能省略的data步,如先经过data步进行简单的条件筛选,然后进行proc步的一些操作,诸如此类的data步,尽量省略吧。
完全可以这么写
5.需要修改数据集变量的label和format格式时,还是通过proc datasets过程进行修改效率比较快,它不需要记录进入pdv,比起data步更有效率。
6.纵向合并数据集时,如果生成的目标表就是来源表之一,那么proc append会比data步更有效率。
proc append和proc datasets中的append过程效率是一样的。
7.对于大数据集,一般都会讲数据集压缩,以节省存储空间,sas里可以通过options compress=yes;来进行压缩。
8.如果我们想要查看一个变量顶部5%的记录,可以通过proc rank一步实现,而不需先通过univariate过程先将p95分位数求出,然后赋值给宏变量,最后再回到数据集中筛选。
9.在编写一些proc步时,对于分组变量最好是用class而不用by,因为用by是得对分组变量进行排序的。
10.视图的应用。视图是一个虚拟表,其内容由查询定义。同真实的表一样,视图包含一系列带有名称的列和行数据。但是,视图并不在数据库中以存储的数据值集形式存在。行和列数据来自由定义视图的查询所引用的表,并且在引用视图时动态生成。所以视图能够节省大量的空间,同时因为它不是以存储的形式存在,因此在一定程序上能够提高运行效率。如对生成的数据集进行means过程
11.format格式数据集的引用。比如说在信用卡交易数据集,每天的交易量都是很大的,同时包括境内境外交易,这时就存在币种转换问题。一张交易量很大的表,和一张币种汇率表,这时如果通过币种去连接两个数据集,首先得先对这两个数据集按币种排序,然后merge进行计算,当然有人想到直接用sql连接,不过这样消耗时间也都是非常大的。这时候就可以先将汇率表做成format的数据集形式,到时就可以直接使用了。如
注意format数据集的地址,如果非work逻辑库下,则需要加上这么一句话options fmtsearch=(逻辑库名称);
12.将数据集载入内存。该方法减少数据集内存分配和释放的次数,降低I/O处理量,提高SAS程序执行效率,但是相当消耗内存,需要确认系统有足够多的内存资源,同时在使用完后,要记得释放。具体形式如下
13.hash的应用。在data步中使用hash对象,不但可以快速有效地检索和读取数据,还可以实现数据集merge的功能,从而减少排序时间,提高了数据处理的能力,相对于merge,hash的效率更高,但是同时也很消耗内存,因此一般都是把小表放进hash中。如用前面汇率进行币种的连接
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29