
沪指天量爆表之后何去何从 大数据图解后市走势
昨日,沪市量能首破万亿大关,两市成交更是突破1.8万亿,不仅创出世界资本市场最大成交量,更导致上交所行情系统遭遇了史无前例的爆表尴尬,成交停留在了10000亿。
昨日盘中巨震勾起了市场人士对“5·30”大跌走势的回忆。那么,这次下跌是不是又会重演“5·30”的走势呢?
川财证券分析师吴家麒通过对比分析“5·30”以及目前的市场数据发现,从投资者开户统计代表的情绪来看,目前和2005~2007年牛市非常类似:股票和基金新开户账户数量不断创新高;从投资者心理分析,股民先于基民进入市场,2005~2007牛市中的数据也验证了这一点,股票账户开户数领先基金账户开户数;从本轮的数据来看,股票账户开户数领先基金账户开户数。
从基民认购基金的情绪来看,增量基金类似2005~2007年不断规模增大,存量基金规模会远小于2007年。新基金发行总规模和单只基金发行平均规模都在不断的上升中,2007年单只基金发行平均规模超过100亿元,现在为40亿元。基金十大重仓股的市值规模和基金平均规模高度一致,原因是基金规模决定了投资股票的市值风格。由于基金个数已非2007年能比,因此从整体的基金平均规模不可能再上升到当时的130亿元的规模。
从创新高股票占比来看,之后的调整一定是较大的指数调整。2015年3月和4月,创历史新高个股的占比都超过了40%。从历史上来看类似的情况只发生过6次,持续时间最长为3个月。每次发生以后都迎来了一个指数超过20%以上的巨幅调整,但是未必这个信号就是牛市终结的信号。
从风格上来看,本轮发生的风格转化和事件与2005~2007年牛市非常类似。B股暴涨以至于集体涨停在2007年5月也发生过。金融股为代表的大盘股暴涨在2006年12月也发生过。本轮牛市经历过的大小盘风格转变和2005~2007年牛市中的前半段非常类似。2005~2007牛市中两个值得注意的信号:“5·30”之前B股先于A股指数见顶,第二次大盘股暴涨的2007年10月即是大盘到顶的时间。
从龙头股表现来看,目前可能还有上涨空间。2005~2007年牛市龙头个股板块是券商、有色和船舶,本轮牛市龙头个股板块是互联网+金融和移动互联网。市值风格来看龙头股的市值都在100亿~500亿元之间。从绝对涨幅来看,本轮龙头股上涨并不及上轮龙头股的上涨。“5·30”之后在绝大多数个股下跌的情况下,几乎所有的龙头股都获得了绝对收益。与之前的认识不同,龙头股顶部时间和大盘的顶部时间并没有明确的一致关系。
那么天量之后,市场如何走?海通证券分析了历史天量图之后认为,牛市中,放量大跌并不一定意味着市场会马上见顶。目前市场趋势还未坏,宏观政策偏暖未变,但指数上涨千点后市场波动会加大,投资环境从3月来的“大胆跑”阶段进入“悠着走”阶段,投资者应密切跟踪政策动向。
牛市中的天量图
回顾05-07年、08年底-09年以及本轮牛市,出现大幅放量下跌的有如下几次:
(数据来源:海通策略荀玉根团队)
大数据图解:天量之后“悠着走”
①牛市中,放量大跌并不一定意味着市场会马上见顶,历史上曾多次出现放量大跌后再缩量创新高。
②从宏观政策和股市政策背景看,本次放量下跌与14年12月9日类似,都是宏观政策暖调但股市政策微调。12月9日证监会进证券公司检查两融业务,本次证监会要求券商两融不得参与场外配资和伞形信托。
③市场趋势还未坏,宏观政策偏暖未变,两融新政暂不代表全面调控股市,20日新华社发表“经济转型关键期需要慢牛长牛支持”文章,增量资金入市继续。但是相比3月初,管理层对股市态度微妙变化、资金蜂拥入市后市场热度已大幅上升,指数上涨千点后市场波动会加大,投资环境从3月来的“大胆跑”阶段进入“悠着走”阶段,密切跟踪政策动向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28