
基本上所有人都接触过大数据相关信息:
1.美国棱镜计划
2.前几天新闻报道的,苹果公司窃取用户隐私
3.百度的用户搜素习惯统计分析
4.淘宝的用户购物习惯分析,智能推荐宝贝
5.浏览器的智能标签页
...
最想了解的大数据架构与算法:
1.著名的Google 网页排名算法:PageRank
2.著名的聚类算法:K-Means
7.CART
3.C4.5
4.k-Means
5.SVM
6.Apriori
...
大数据应用的未来挑战和趋势是:
最大的挑战并不是技术和数据本身,而在与人们对于数据的认识和态度。这方面很多互联网公司做的比较好,它们拥有丰富的数据同时也有强烈的盈利需求,可以挖空心思的在各种数据上做文章;而对于很多传统行业,尤其是政府,首先它们还是相当重视数据的,甚至比互联网公司都要重视,但出于行政管理,组织利益和安全等的考虑数据往往会形成孤岛很难做到综合利用。
另外一方面的挑战是构建成功的大数据应用需要对业务逻辑和数据处理技术都有比较深入的理解,而且很难拆解开,因为业务的需求会直接影响到底层架构的设计以及算法和工具的选择,这一点和传统的交易型系统有很大区别,所以现在一些行业中的软件+数据库+硬件的分工模式不太适合大数据应用开发,市面上能够对各种因素通盘考虑做整体架构的公司并不多。
趋势的话我的理解,现在技术层面的工具,技术是一个百家齐放的局面,其原因一方面是开源项目的运营模式越来越成熟,另一方面是大数据的分析处理是多样化的,相信未来很长一段时间都会维持这个局面,传统的软件开发上已经逐渐向服务提供商转变,产品本身可能变得越来越不重要,贴合用户需求的定制化架构和解决方案可能更加受到欢迎,同时云计算的不断发展也将使得未来的架构设计更加轻松,部署和迁移更加便捷。
未来大数据的发展前景是巨大的,现在人们的生活已经离不开大数据了,云计算、云存储、电商等等网站的数据都是大数据,但是大数据的发展的技术还是面临挑战,技术的发展新的技术也在不断更新,所以大数据应用的挑战是结合新技术,不断优化大数据的算法。
大数据存储技术、并行计算、吞吐量
读完试读样章后的启发:
大数据其实才刚刚起步,正在打垮不发展,面临着很大的机遇和挑战,海量待挖掘数据,数据切分算法,分布式图计算了解到大数据的精深之处,要学习的还有很多,我感觉到了自己的不足之处,大数据加油,你一定会更好更牛逼,我看好你哦,希望你能够带我飞的更高,go,go。。。(CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10