
玩转大数据,其实是在挖掘人性需求_数据分析师培训
从今天起,做一个爱自己的人,观察自己,成全数据 。
今日资本的徐新女士当年准备投京东的时候,刘强东把后台ERP系统打开给徐新看,虽然销售额只有5000万元,但每个月增长10%,京东商城当时还没钱打广告,可老客户一年会上来3次,这几组数据足以证明,用户喜欢这个网站。这组数据的信息量和推演逻辑,足以覆盖一份花哨的项目故事PPT。
因为数据在说话,更因为用户行为累积成的数据信息足以挖掘出产品的可成长性、电商的趋势、盈利模式是否健康等核心信息。而大数据的来源其实是人,玩转大数据,其实是在挖掘人性需求。
大数据更接地气的解释是统计学(包含但不完全),但大数据应用需要从用户行为中摸出统计及定性和定向的脉络,最终形成有价值的信息,以指导产品设计、平台搭建、营销推广等实用策略。数据本身零散的,需要经过清洗、挖掘、组织、归纳,演变成有价值的信息,由此起到决策、佐证、指导的应用价值。
其实,大数据更深层的挖掘就是用户行为(人性)、用户需求(欲望)、转化(选择),把“我”升级成“我们”,换位思考一下行为和欲望,再进行性别、年龄、地域、收入、教育等等深度的信息挖掘,就能理解在纷繁复杂的人类与人性里,数据于此的息息相关了。说白了,大数据就是若干个“我”的存在,而大数据应用,就是在“我们”里挖掘信息,以洞察“我们”的需求,转化成商业模式,实现盈利。对“我们”的玩转,也是电商盈利模式不断升级的过程。
当微信、微博社交媒体成为用户黏度最高的产品时,基于社交圈的用户原始需求也最有效地形成有价值数据:
1、社交平台的信息分享对于个体用户有着强烈的需求煽动力,电商社交化立刻成为趋势。
2、用户的兴趣点、社交图谱与购买转化形成的时间规律、价格规律、敏感词规律,通过萃取可梳理出一套电商营销方法论,在恰当的时间、恰当的社交平台、以恰当的卖点投放恰当的产品广告,触达用户,形成精细化营销。
而这一系列大数据的有效信息萃取,都是来自若干个“我”。如果还在神乎其神地脱离“我”谈大数据,可以想见的是,没人气。
大数据是随人走的,但产品设计、平台搭建、营销推广,是随大数据应用走的,对人性洞察越犀利,在人与大数据之间的正向转化也就越乐观。电商资料库可以快速捕获、监控、分析用户行为,进行数字化生产和管理。
海量用户行为数据背后,隐藏的就是消费行为逻辑,什么样的广告用户最买单?不同区域的人购买习惯差异是什么?不同年龄与性别的人在不同时期都在消费什么?PC与移动的用户及用户行为差异是什么?这些复杂碎片化的信息,都能从数据中系统地萃取,形成一套方法论。
其本质,依然是在洞察“我”。每一个“我”都是孤立的碎片信息,但是通数据收集、挖掘、清洗、归纳,进行价值数据输出,“我”就升级成“我们”,“我们”就合力成海量需求,海量需求就成为有价值的数据包。通过精准分析、定位、投放,能够让产品设计、平台搭建、营销变得智能、精准、快捷、高效。尊重每一个“我”的存在,是大数据应用从人性及用户行为出发,挖掘有效信息的根本。
未来,数据收集和分析能力的强弱可能决定了企业的核心竞争力。当每一个个体成为大数据构成中的一分子的时候,把自己也作为一个用户样本,真实洞察自身需求和行为,也能从价值观和行为习惯中推理出相唿应的价值信息,放之“我们”中进行匹配和佐证,也算为大数据贡献一个样本了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23