京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术与安防应用未来发展分析_数据分析师培训
平安城市的建设从最初2004年6月第一批21个科技强警示范城市建设开始,到现在已经整整10个年头。
在这十年里,平安城市的建设已经在新技术的推动下,从模拟到数字,从数字到高清,快速发展了三代。平安城市建设的效果也初步体现,监控覆盖范围越来越广,城市管理和治安对视频监控的依赖度逐渐加大。
比如在杭州,平安杭州项目已经全面启动,监控系统设计规模达5万个监控点。这也是迄今为止最大规模的平安工程项目。新的社会治安监控系统,用科技手段来保障社会安定,不仅让平安杭州成为规模之最,也为美丽的杭州描绘了一幅宏大的平安“画卷”。
比如在遵义图像综合应用系统,建设高清摄像机数量达到3000个,存储资源达到10PB,通过构建遵义市应急处置业务应用模型,满足突发事件应急处置决策指挥需要,达到“一点感知,处处可知;闻警而动,处处协同;有备而战,临危不乱”的状态。
在这些平安城市项目建设后,产生了大量的视频数据,数据量每天都可以用PB级去衡量。已经达到与国际数据巨头媲美的地步。我们知道,对于数据最有发言权的应该是互联网巨头google,google一天全世界产生的数据量为10PB,量级是一个平安城市产生的数据量10倍。但是我们来看一下google利用这每天10PB的数据量一年的产值吧:超过500亿美金!而平安城市通过拥有谷歌十分之一的数据量产生了多少价值呢?这是一个无解的值,甚至很多时候我们并不能量化价值产出。
那么谷歌如何让这些数据产生价值的呢?
大数据就是谷歌让数据产生价值的核心,大数据是一个笼统的概念,是把多元化、无任何连接关系的数据进行清理,分析出数据之间的关系,得到我们想要的、关心的结果。比如通过城市数据分析我们能够得到城市出行状态、消费状态、人口分布、市民交际状态、公共资源应用状态等一系列数据,这些数据可以为我们城市管理作为优化依据,也可以作为提高城市商业和竞争力的关键指导。
要实现大数据,首先需要通过数据采集进行大量的数据积累,让数据量足够多,足够找出数据之间的规律。业界对大数据总结出四大特点:数据量大、类型多、速度快、价值高。宇视根据大数据概念的四大特点,结合独有的电信级技术优势,形成了一整套大数据应用架构,分为四层对大数据进行了阐述和规划。
第一层为数据采集层,实现大数据的数据量大、类型多的特点。视频监控完全具备了此种特点,数据量巨大,所含有的信息类型众多。但是行业内对于视频录像一直有两个共识:视频监控的数据,90%以上是无用的。另外一个共识是:视频监控的录像数据,超过1个星期后其价值就降低了90%。虽说这些数据有一些夸张,但是这两个共识也真实的反映了大量视频监控录像的尴尬境遇。要实现大数据,关键是能否能把视频进行结构化,进行语义化描述,让类型数据能够提取出来。这就涉及到视频智能分析了。也是数据仓储层的数据分类工作。
数据采集之后,数据在数据仓库中对多样化数据进行存储和基础分类。在数据仓储层,对数据的分类采用智能分析集群,其具备以下特点:
分布式计算,将不同I帧图像分布式计算,充分利用前端DSP和中心CPU、GPU计算资源;
特征数据结构化管理,以图搜图快速检索录像只需提取目标图片特征数据,然后比对特征数据即可完成以图搜图,大大提高检索速度;
机器智能学习矫正,将分析错误结果反馈给样本库,自动调整样本库,以提高准确率。
得到语义化和分类数据之后,就可以对数据中隐藏的宝藏进行挖掘了。数据分析与挖掘,能够对数据进行定制化清洗,能够智能化自学习优化清洗算法,实现数据的价值挖掘。
宇视数据分析和挖掘采用基于hadoop架构优化的Unihadoop架构。Hadoop起源于处理网页类数据的,而安防数据由时间,空间,谁,及事件特征组成的,有行业特殊性,而宇视经过试验得到数据,对数据组织进行优化,实现性能的大幅度提升,不仅优化了工具,更重要的在Hadoop的基础上,实现了时空数据库,来优化安防数据的存储,最终性能远好于标准版Hadoop。
大大数据只是底层架构,数据的搜集、分析和挖掘都是为了以业务为主体的数据呈现,只有贴合实际的业务进行数据呈现,才能体现大数据的价值。
数宇视对于数据可视化进行了深度研究,能够提供多样化的直观可视化展现,包括电子地图整合、3D地图综合显示,移动显示等,通过这些数据的整合展现,实现了车辆可疑轨迹分析,车辆套牌分析,案件现场还原等一系列业务功能,真正做到业务定制化,达到显示即所需。
视频监控数据是一个宝藏,怎么去挖掘这个宝藏,如何挖掘宝藏将是未来平安城市建设的另一个重点。在这个方向上,大数据具备天然的概念优势和极适配的架构优势。通过大数据的手段去挖掘视频中的有效信息,是最具备可行性的手段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12