
大数据技术与安防应用未来发展分析_数据分析师培训
平安城市的建设从最初2004年6月第一批21个科技强警示范城市建设开始,到现在已经整整10个年头。
在这十年里,平安城市的建设已经在新技术的推动下,从模拟到数字,从数字到高清,快速发展了三代。平安城市建设的效果也初步体现,监控覆盖范围越来越广,城市管理和治安对视频监控的依赖度逐渐加大。
比如在杭州,平安杭州项目已经全面启动,监控系统设计规模达5万个监控点。这也是迄今为止最大规模的平安工程项目。新的社会治安监控系统,用科技手段来保障社会安定,不仅让平安杭州成为规模之最,也为美丽的杭州描绘了一幅宏大的平安“画卷”。
比如在遵义图像综合应用系统,建设高清摄像机数量达到3000个,存储资源达到10PB,通过构建遵义市应急处置业务应用模型,满足突发事件应急处置决策指挥需要,达到“一点感知,处处可知;闻警而动,处处协同;有备而战,临危不乱”的状态。
在这些平安城市项目建设后,产生了大量的视频数据,数据量每天都可以用PB级去衡量。已经达到与国际数据巨头媲美的地步。我们知道,对于数据最有发言权的应该是互联网巨头google,google一天全世界产生的数据量为10PB,量级是一个平安城市产生的数据量10倍。但是我们来看一下google利用这每天10PB的数据量一年的产值吧:超过500亿美金!而平安城市通过拥有谷歌十分之一的数据量产生了多少价值呢?这是一个无解的值,甚至很多时候我们并不能量化价值产出。
那么谷歌如何让这些数据产生价值的呢?
大数据就是谷歌让数据产生价值的核心,大数据是一个笼统的概念,是把多元化、无任何连接关系的数据进行清理,分析出数据之间的关系,得到我们想要的、关心的结果。比如通过城市数据分析我们能够得到城市出行状态、消费状态、人口分布、市民交际状态、公共资源应用状态等一系列数据,这些数据可以为我们城市管理作为优化依据,也可以作为提高城市商业和竞争力的关键指导。
要实现大数据,首先需要通过数据采集进行大量的数据积累,让数据量足够多,足够找出数据之间的规律。业界对大数据总结出四大特点:数据量大、类型多、速度快、价值高。宇视根据大数据概念的四大特点,结合独有的电信级技术优势,形成了一整套大数据应用架构,分为四层对大数据进行了阐述和规划。
第一层为数据采集层,实现大数据的数据量大、类型多的特点。视频监控完全具备了此种特点,数据量巨大,所含有的信息类型众多。但是行业内对于视频录像一直有两个共识:视频监控的数据,90%以上是无用的。另外一个共识是:视频监控的录像数据,超过1个星期后其价值就降低了90%。虽说这些数据有一些夸张,但是这两个共识也真实的反映了大量视频监控录像的尴尬境遇。要实现大数据,关键是能否能把视频进行结构化,进行语义化描述,让类型数据能够提取出来。这就涉及到视频智能分析了。也是数据仓储层的数据分类工作。
数据采集之后,数据在数据仓库中对多样化数据进行存储和基础分类。在数据仓储层,对数据的分类采用智能分析集群,其具备以下特点:
分布式计算,将不同I帧图像分布式计算,充分利用前端DSP和中心CPU、GPU计算资源;
特征数据结构化管理,以图搜图快速检索录像只需提取目标图片特征数据,然后比对特征数据即可完成以图搜图,大大提高检索速度;
机器智能学习矫正,将分析错误结果反馈给样本库,自动调整样本库,以提高准确率。
得到语义化和分类数据之后,就可以对数据中隐藏的宝藏进行挖掘了。数据分析与挖掘,能够对数据进行定制化清洗,能够智能化自学习优化清洗算法,实现数据的价值挖掘。
宇视数据分析和挖掘采用基于hadoop架构优化的Unihadoop架构。Hadoop起源于处理网页类数据的,而安防数据由时间,空间,谁,及事件特征组成的,有行业特殊性,而宇视经过试验得到数据,对数据组织进行优化,实现性能的大幅度提升,不仅优化了工具,更重要的在Hadoop的基础上,实现了时空数据库,来优化安防数据的存储,最终性能远好于标准版Hadoop。
大大数据只是底层架构,数据的搜集、分析和挖掘都是为了以业务为主体的数据呈现,只有贴合实际的业务进行数据呈现,才能体现大数据的价值。
数宇视对于数据可视化进行了深度研究,能够提供多样化的直观可视化展现,包括电子地图整合、3D地图综合显示,移动显示等,通过这些数据的整合展现,实现了车辆可疑轨迹分析,车辆套牌分析,案件现场还原等一系列业务功能,真正做到业务定制化,达到显示即所需。
视频监控数据是一个宝藏,怎么去挖掘这个宝藏,如何挖掘宝藏将是未来平安城市建设的另一个重点。在这个方向上,大数据具备天然的概念优势和极适配的架构优势。通过大数据的手段去挖掘视频中的有效信息,是最具备可行性的手段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26