
现在越来越多的企业与互联网对接,搭建大数据平台,利用大数据进行有效分析。商业地产要如何利用大数据对客户群有效分析?
一、商业地产进军电商的核心——大数据研究
从国内近年来新开张的商业物业来看,影院、餐厅、美容、健身、娱乐等“亲历性”服务项目占有的面积正在不断增多,而单纯的商品销售面积正在不断减少,这也是苏宁、国美、万达等传统商业企业全面高调进军电商的原因。
只有进入电商领域,他们才能积累更多的数据,为大数据时代的到来积累资本。全渠道销售模式是未来零售新方向,或有可能颠覆单一模式(纯线上或纯线下模式),开创零售行业新格局。而开展线上线下互动的O2O模式的核心,就是大数据应用。
大数据对于商业地产的最大价值:
1、为零售策略的开展提供细致的指导建议;
2、精准营销;
3、产品研发;
4、完善供应链。
二、典型商业地产的大数据建设
1.朝阳大悦城
朝阳大悦城的生命力何在?除了及时的业态调整和不断创新的营销活动等这些表面上看到的动作,朝阳大悦城真正的核心竞争力是高效的运营管理,是以大数据为基础来部署,所有的营销、招商、运营、活动推广都围绕着大数据的分析报告来进行的大战略。
数据运营案例:
a、根据超过100万条会员刷卡数据的购物篮清单,将喜好不同品类不同品牌的会员进行分类,将会员喜好的个性化品牌促销信息精准进行通知。
b、朝阳大悦城在商场的不同位置安装了将近200个客流监控设备,并通过Wi-Fi站点的登录情况获知客户的到店频率,通过与会员卡关联的优惠券得知受消费者欢迎的优惠产品。
c、经过客流统计系统的追踪分析,提供解决方案改善消费者动线,4层的新区开业之后客人总是不愿意往新里走,因为消费熟悉之前的动线,所以很少有人过去,该区域的销售表现一直不尽如人意。为此,招商部门在4层的新老交接区的空区开发了休闲水吧,打造成欧洲风情街,并提供iPAD无线急速上网休息区。通过精心设计,街区亮相后新区销售有了明显的改观。
d、打通微信与实体会员卡,会员的消费数据、阅读行为、会员资料打通后,更好地了解消费者的消费偏好和消费习惯,从而更有针对性地提供一系列会员服务。
2.银泰百货
银泰大数据战略:
a、2013年,银泰百货全国门店的WIFI网络将铺设完毕,顾客进店可以免费登录使用WIFI。
b、打通线上线下,开启020,顾客通过手机端参与产品折扣活动,再到实体店提货的购物模式。
c、与天猫宣布O2O战略合作,未来,双方还将在系统层面、库存、会员、服务流程等方面深入合作。
未来大数据期许:
a、银泰在百货门店和购物中心铺设免费WIFI,逐步抓取用户数据,包括进店用户数据和VIP用户数据,利用银泰网,打通了线下实体店和线上的VIP账号。当一位已注册账号的客人进入实体店,他的手机连接上wifi,后台就能认出来,他过往与银泰的所有互动记录、喜好便会一一在后台呈现。通过对实体店顾客的电子小票、行走路线、停留区域的分析,来判别消费者的购物喜好,分析购物行为、购物频率和品类搭配的一些习惯。
b、银泰网甚至可以累积不同用户对品牌和折扣喜爱程度的数据,依托成熟门店的相关数据,再根据新开门店所在城市的用户分析,导出新开门店组货和招商的指导意见。
3.沃尔玛
2013年6月,世界最大零售商沃尔玛成功收购数据分析初创公司Inkiru,这家初创公司Inkiru将加入沃尔玛全球电子商务技术团队WalmartLabs,为零售巨头沃尔玛提供一个分析预测平台,以加强其网站的个性化、搜索、防欺诈及营销能力。沃尔玛在10个市场内拥有电子商务网站,有10700家商店遍布全球。
大数据建设摘录:
a、拥有世界上最大的数据仓库系统。沃尔玛数据仓库里集中了其各门店的详细原始交易数据,其数据规模仅次于美国政府的数据库。在这些原始交易数据的基础上,沃尔玛利用NCR数据挖掘工具对这些数据进行分析和挖掘。
b、扎根社交网络。2011 年,沃尔玛以3亿美元收购了一家专长分类社群网站Kosmix。Kosmix不仅能收集、分析网络上海量资料(大数据)给企业,还能将这些资讯个人化,提供采购建议给终端消费者(若不是追踪结帐资料,这些细微消费者习惯,很难从卖场巡逻中发现)。
c、社会热点追踪。工程师从每天热门消息中,推出与社会时事呼应的商品,创造消费需求。分类范围包含消费者、新闻事件、产品、地区、组织和新闻议题等。同时,针对社交网络快消息流的性质,沃尔玛内部的大数据实验室专门发展出一套追踪系统,结合手机上网,专门管理追踪庞大的社交动态,每天能处理的资讯量超过10亿笔。
4.ZARA
快时尚巨头ZARA的成功以 “快”出名,灵敏的供应链系统、多品种少量、制售一体的效率化经营,使众多服装企业望其项背。除了台面上的设计能力,台面下的资讯/数据大战,更是重要的隐形战场。ZARA推行的海量资料整合,通过线下实体店和线上网店的信息收集分析,最终各方信息被分类处理,成为设计、生产、销售的指引。
大数据建设摘录:
a、门店监控覆盖,及时了解客户需求。走进ZARA店内,柜台和店内各角落都装有摄影机,店经理随身带着IPDA。当客人向店员反映:“这个衣领图案很漂亮”、“我不喜欢口袋的拉链”,这些细微末节的细项,店员向分店经理汇报,经理通过Zara内部全球资讯网络,每天至少两次传递资讯给总部设计人员,由总部作出决策后立刻传送到生产线,改变产品样式。
b、门店当日成交热度分析报告。每日关店后,销售人员结帐、盘点每天货品上下架情况,并对客人购买与退货率做出统计。再结合柜台现金资料,交易系统做出当日成交分析报告,分析当日产品热销排名,然后数据直达Zara仓储系统。
c、以线上店为实体店的前测指标。Zara目前在全球多个国家成立网上商店,增加了网络巨量资料的串连性。线上商店具有强化双向搜寻引擎、资料分析的功能。线上的交易行为,客户的意见可以及时回馈给生产端,也对消费者提供更准确的时尚讯息。线上商店除了交易行为,也是活动产品上市前的营销试金石。Zara通常先在网络上举办消费者意见调查,再从网络回馈中,撷取顾客意见,以此改善实际出货的产品。会在网络上抢先得知Zara资讯的消费者,进实体店面消费的比率也很高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14