
揭秘加多宝“百家姓”罐背后的大数据布局
近段时间来备受热议的加多宝换装传闻再有劲爆新料。
据百度知道上一位网友透露,在加多宝换装传闻甚嚣之时,除了密锣紧鼓推进纪念罐包装设计外,最近加多宝还与全球第三大的数据供应商TeradataAster以及和亚马逊合作的MapR技术公司频频接洽,计划在推进纪念罐上市时同步进行大数据营销新布局。
据悉,加多宝将与百度、淘宝、京东以及顺丰等平台进行大数据合作,在全国5万多家消费终端进行消费者数据收集,首次利用大数据——DMP(Data-ManagementPlatform数据管理平台)+LBS(LocationBasedService基于位置的服务)+CDIM(CrossDeviceIdentityManagement跨屏识别管理)技术,实现真正的O2O+F2C(Factorytocustomer从工厂到消费者)现代化终端销售。也就是说,通过“百家姓”罐、十二生肖罐、十二星座罐、十二色彩罐等纪念罐及LBS的信息收集,加多宝将充分运用大数据技术,建立精准的用户画像模型,与消费者彻底“玩”起来。
对此,北京一位不愿具名的数字营销专家表示,加多宝此举意在颠覆国内快消行业的零售模式。一旦此DMP+LBS+CDIM模式实现后,加多宝或将成为快消行业的第二个NIKE+。
新技术永远是洞察用户行为最有力的工具。在互联网逐渐步入大数据时代后,企业及消费者行为也将迎来一系列的改变与重塑。而在当下的“互联网+”模式下,消费者的一切行为在企业面前似乎都将是“可视化”的。怎样利用大数据来为更好地实现精准营销,进而深入挖掘潜在的商业价值,是当前所有企业面临的问题,而传统的制造及零售业更是走在了前面。
对于营销者来说,过去的AIDA(AttentionInterestDesireandAction)漏斗以及传统的CRM(CustomerRelationshipManagement客户关系管理)模式已不再适合当下的市场环境。像加多宝这样的企业,其过去实现目标市场全国性铺货的终端覆盖能力,固然让快消行业的小伙伴们都惊呆了,不过,随着“互联网+”时代的到来,如何进一步获取精准的消费者信息从而优化销售决策也为加多宝等快消行业巨头带来挑战。
“2015年最新的数据显示,人口最多的前100名姓氏当中,第一大的李姓拥有人口已超过9500万人,占全国人口总数的近8%,集中分布在河南、四川、山东三省;但百家姓最后一个的文姓,人口只有100多万,占比仅约0.14%,分布也比较散,所以如果加多宝要全国铺货‘百家姓’概念罐新品,会对线下终端渠道带来极大的难度。”上述数字营销专家分析指出,零售策略设计是零售业大数据价值最大的地方,也是大数据可以直接为企业提供支持的业务。不过,在快消行业中,除了关注整体的用户及销售数据外,关注单一品类及单一商品的数据以及地域性数据也显得尤为重要,而且这些数据的获得离不开线下终端的参与。因此,基于DMP+LBS+CDIM模式的消费者资料整合,将对解决终端仓储和物流问题提供重要的支持。而这也是加多宝布局大数据的必要组成部分。
“某一地区某一品类在一定时期内的销量,订单数,金额,以及退换货率等数据,将有助于后续的运营,营销或者促销的选择。”该营销专家补充称,CDIM是“数据驱动型营销”的中心,通过跨渠道、跨屏的数据收集方式监测用户的行为和信息,并从业务视角对数据进行全方位、透彻的分析来驱动产品,运营及市场策略的调整,从而提高ROI(ReturnOnInvestment投资回报率)是零售业互联网大数据应用趋势。
据了解,海外巨头亚马逊、ZARA以及国内的京东、顺丰优选等企业都特别重要这些珍贵的消费者资料,除了应用在生产端,同时还在客服中心、行销部、设计团队、生产线和通路等部门和团队使用,并据此形成各部门的KPI,完成内部的垂直整合主轴,实现从“挖掘”顾客需求进展到要能够“创造”消费需求的转变。
在快消行业里,最被熟知的一个案例当数亚马逊的EMR(ElasticMapReduce)模型,此外,还有从几年前就开始被经常吹捧的一个的案例——Yelp通过整理其巨大的编辑日志文件,以寻找隐藏的关联性。倘若加多宝成功推行DMP+LBS+CDIM模式的资料整合,可以预见未来国内的快消圈,除了产品上的研发能力外,线上及线下终端渠道结合的数据大战将是更重要的隐形战场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22