
商业模式不清晰、难“变现” 大数据离盈利还有多远
在多数行业,大量的数据仍因缺乏可运营的商业模式而“沉睡”,无法盈利成为大数据产业化发展的瓶颈——大数据离盈利还有多远
“未来早已来到我们身边,只是分布还不均匀。”这是清华大学副校长杨斌对大数据领域现状的概括,他认为大数据已在我们身边,而非仅是对未来的幻想。
在4月10日至11日由清华大学、贵州省经信委等单位主办的2014中国“云上贵州”大数据商业模式大赛总决赛上,的确涌现了很多实用的大数据应用,获奖者们还分享了贵州省政府所提供的2000万元扶持资金。然而在多数行业,大量的数据仍因缺乏可运营的商业模式而“沉睡”,无法盈利成为大数据产业化发展的瓶颈,大数据离“变现”究竟还有多远?
商业模式不清晰、难“变现”
农业、建筑、旅游、金融、健康、公共服务……涵盖诸多领域的大数据应用在“云上贵州”大数据商业模式大赛上层出不穷。其中,获得一等奖的“东方祥云”项目设想为全国15万座水电站、水库提供免费来水预报,帮助合理调度用水,据估算可为这些单位信息化改革节省90%的成本;而“淘数”则设想建立网上数据商城,出售具有商业价值的数据;“蜂能”则试图通过智能用电终端采集设备用电数据,进行节电和需求优化管理,预计可实现节约用电10%~20%。
这些大数据的“新玩法”可谓超乎想象,但大数据的利用价值远不止如此。以中国公路物流行业为例,其市场价值已达亿万级,而90%以上运力为个体车主,空驶率达30%以上,集约程度较低,浪费了物流资源。如果依托大数据技术开发出集中运力的手机APP,就可提高配置效率,降低运输成本。然而,目前这一领域的手机APP多达200款,但能真正实现盈利的寥寥无几。
能持续盈利才能发展壮大成产业,这是大数据亟须“变现”的原因。但在大多数行业,大数据还没有找到适合的位置,“变现”难是大数据领域普遍存在的焦虑。“我们最关注盈利模式清晰,易于操作的大数据应用,但这恰好也是目前比较欠缺的。”赛伯乐投资公司董事长朱敏说。
数据壁垒制约产业化进程
在“云上贵州”大数据商业模式大赛上,贵州省向参赛者开放了智能交通、智慧旅游、电子商务、电子政务、食品安全、工业和环保7个领域的真实数据,成为我国首个开放政府数据的省份,这些真实的数据不仅吸引了众多抱有创业梦想的参赛者,也吸引了百度和阿里巴巴这样的互联网“巨鳄”。
“丰富的数据资源是大数据产业发展的前提,也是贵州这次大赛最吸引人的地方。”阿里巴巴副总裁涂子沛说,他认为贵州省政府对大数据的开放,是“拥抱了未来”。
“投资大数据领域所要考察的关键因素包括对行业的渗透特性、创业者对大数据的理解能力、行业小气候、商业模式实现的难易程度等。”清华大学数据科学研究院执行副院长韩亦舜说,这些都需要数量巨大且真实的原始数据作为支撑。
然而,由于经济、观念等原因,我国政府、企业和行业的信息化建设往往缺少统一规划和科学论证,各部门所拥有的信息缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度低、共享难,也是目前大数据产业化发展公认的最大障碍。
需营造适宜生态环境
大数据的浪潮已经影响到了世界上很多企业。根据科尔尼咨询公司的研究,在过去两年中有超过45%的公司实施了商业智能或是大数据计划。在中国,围绕“数据财富”的鏖战已经打响——广州的“天云计划”,哈尔滨的“中国云谷”,鄂尔多斯的“草原的云谷”,北京的“祥云工程”,目前全国有20多个地区都开展了围绕大数据的云产业部署。
工信部软件服务业司司长陈伟认为,贵州所举办的“云上贵州”大数据商业模式大赛略显不同,“它推动了大数据从学术研究向商业实践的转变,为大数据的商业进程开了一扇窗,是大数据产业发展的正能量”。
尽管如此,大数据要“变现”,仍需要多方努力营造更加适宜的生态环境。
“首先要改变对数据隐私权的认识,隐私边界的界定是动态过程,绝对的隐私权保护体现的是世界静止观。”杨斌说,而极端的隐私保护会“以一种较为粗暴的方式”制约产业的发展。
他还呼吁企业开放其大数据资源,“如果中国银联愿意开放数据库,哪怕只是5天的数据片段,其开发结果可能是诞生一个远离金融但对民生产生重大影响的应用。”在他看来,大数据商业模式是难以预设方向的,而这才是包容智慧的力量。
中国工程院院士、国家信息化专家组咨询委员会委员邬贺铨认为,政府数据资源在安全前提下逐步有序适当开放,也有利于提升公众服务和社会管理,营造创新环境和释放商业机会,市民、企业和政府都将从中受益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27