京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 带着个人信息的旧手机该去哪儿
这个时代,我们不得不承认,手机可能换得比衣服还快。那么问题来了:旧手机如何处理?送给亲戚朋友吧,担心是“二手货”不大好意思拿出手,拿到地摊上卖了吧,虽然最经济实惠但又不安全。
据媒体报道,一个小小的软件就足以将旧手机上的通讯录、短信、照片等信息恢复。这些手机上若曾有淘宝、支付宝、微信、银行等关键信息,一旦被人加以利用,岂不是造成了关键信息的泄露?
手机不光是“手机”
随着智能终端的兴起,手机的功能出现前所未有的丰富与拓展,越来越多的工作、生活、社交功能和应用陆续增添到手机之中。手机已经不仅仅是一个能打电话、发信息的通信工具,而是一个可以随时随地参与移动互联网生活的平台和入口。当然,在手机的功能不断增强的同时,它的社会化功能也不断延伸,比如手机承载着感情、代表着品位等。
在手机上,通讯录代表着圈子,微信等账号意味着社交生活,银行卡、身份证等关键信息则意味着财产的安全与否,当然聊天记录和视频照片等更是事关个人隐私。最关键的是,手机将自己打造成了一个综合信息平台,在这个平台上,所有的信息都得到了汇总、融合。
信息爆炸的时代里,最不缺的就是信息,当然最有价值的就是开发信息,而最让人揪心的莫过于怎么努力都保护不好自己的关键信息。也正因此,大数据营销聚焦于通过收集并整合信息然后发掘消费者个性特征,如何有效保护个人隐私和信息安全则更显重要与紧迫。
“旧手机”也并不旧
在以诺基亚为代表的功能机时代,手机更侧重于经摔耐用的特质。而如今,耐用早已不是衡量手机的关键条件,品牌、个性、时尚元素、摄像头、内存等才是衡量智能手机的重要因素。一个现实的状况是,围绕手机的话题和新闻越来越多,人们谈论手机的次数也不断增加,人们花在手机上的时间越来越长,单个人手上的手机数量越来越多,手机的保有量早已超过十多亿,围绕手机形成的产业链越来越长、越来越大,唯独“逆向”变化的是,人们更换手机的时间间隔变得越来越短。
从最初的几年更换一部手机,逐渐到20多个月,再不断压缩到18个月、15个月就更换一次,甚至有很多人几个月就更换一次。而所有被更换的手机,不管用了几个月或者一两年,都算是旧手机了。但是从产品的新旧程度上来看,这些所谓的旧手机其实并不旧。
更为重要的一点是,这些旧手机上都承载着截至目前的个人重要信息,这些信息包括身份证、银行、各种账号、通讯录等关键信息。一般而言,这些信息之于一个人是有着相对稳定性的,并不会因为手机的变化而出现彻底的更新。恰恰相反,这些重要的信息都藏在了手机之中。
得让旧手机“失忆”
从目前的科技发展节奏来看,手机上装载的应用功能会越来越庞大,手机上携带的信息量会越来越多,自然保护个人信息安全也会变得越来越重要,但是难度却越来越大,而更换手机的时间间隔会越来越短,旧手机会越来越多。
当然,处理旧手机的方式有多种,送给别人继续使用,通过以旧换新的方式折算,卖给旧手机回收商,扔进垃圾桶,丢在家里。这些常见的方法中,除了留在家里之外,其余的处理方法都有着泄露关键信息和个人隐私的风险,而堆在家里却潜藏着污染等风险。
旧手机终归是要处理的,但是前提是有效保护自己的信息安全,特别是关键信息和隐私。处理旧手机的难处并不在于回收价格及回收流程,而在于信息安全的保护上。那么,如何有效保护消费者的信息安全,让消费者能够安安心心地处理掉旧手机就值得深思。
首先在于消费者自身需不断强化一种意识,在处理旧手机时销毁掉原有的信息,让自己的手机彻底“失忆”。目前苹果可通过手机终端自身的功能删除相关内容,而安卓手机则需要采用步骤较多的方法来解决。其次,企业抓住契机有所作为。既然能够开发出恢复原有信息的软件,那么同样也能开发出清除原有信息的软件和程序。另外,360等“安保户”企业还可以进一步拓宽手机卫士的功能,手机厂家同样也可以增加手机的“失忆”能力,甚至可以将其作为卖点。
此外,公共权力机关还要不断强化监管,通过监管措施,让开发的恢复软件应用能够用到真正需要的地方,而不是盗取公民的个人信息,让开发的“失忆”程序也能真正用到保护个人信息安全而不是恶意破坏上,打击围绕手机信息安全而产生的不法分子和利益链条,如此等等。当然,还要从政策支持等方面着力,鼓励手机商场建立回收和再利用体系,这既保护了消费者个人信息安全,为企业找到了利润空间,也能解决旧手机等造成的环境污染等问题。
总之,旧手机将越来越多,但是旧手机上承载的信息量却愈来愈大,保护个人信息安全变得越来越迫切,面对一部旧手机首当其冲的是给其“失忆”,然后让硬件走进循环可持续利用的通道,这才是旧手机比较理想的归处。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28