
Yahoo的大数据分析的个人化应用_数据分析师培训
大数据(Big Data)近年来已成为市场关注焦点,为了能够发掘大数据的商业价值,在基础建设已经渐渐完备,数据搜集及储存能力已然成熟的环境下,大数据应用的探索焦点,已逐渐从数据技术与系统的讨论,逐渐转移到数据的分析与各领域的深化应用。
如目前的入口网站早已是许多人日常生活不可或缺的服务提供者,透过使用者在使用入口网站服务的行为分析,业者不但可以更进一步地提供个人化推荐服务,还可能为相关业者找到更多的商机。
但并非所有的数据都能产生价值,必须透过很多生态系统搭配组合,才能产生用户所需要的资讯。
大数据已成市场关注焦点。数据的确需要去开采,也需要技术及工具,但技术及工具也可能会用错或浪费资源,所以技术人员不能只看技术,而是要去理解数据真正的价值所在。
如健康照护服务及定位数据如果加以混搭,虽然可以提供更进一步的价值,但如何说动使用者开放或分享,其实需要更细致的说服过程。此外,大数据分析所呈现的世界,客户需求会更加清晰,但市场区隔也会变小,产品及服务必须要更加客制化。
随着无线网路、行动装置及物联网的时代来临,人与物的连结将变得更加多样化,也创造出更多各类型的数据,如何管理、维护及分析这些数据,并将正确分析的结果即时传给正确的使用者,创造更多的商业价值,势必将成为企业未来非常重要的竞争力,大数据分析的价值,值得加以重视。
大数据分析的个人化应用
网际网路基础建设渐趋成熟,加上行动装置的便利性及普及,让许多人的日常生活行为,已经离不开网路,其中又以入口网站接触到的使用者最多,也成为大数据的最主要来源。
如Yahoo提供的诸多服务,如电子信箱、购物、新闻、理财等,都可以追踪到消费者的足迹,加上使用者其他的网路使用行为如点击广告等,以及全球每月可收集超过16亿只智慧型手机及平板电脑上的使用者行为,如何进一步分析这些个人化应用,已成为重要议题。资讯及选择太多,其实也是大数据分析所遭遇的一大难题,以Yahoo所能追踪的消费者使用足迹为例,就会发现其实跟一般官网可以追踪的足迹不太一样,由此也可知,大数据与一般数据其实仍有差别,不能用同样的思考或方法来分析。
大数据具有5大特性,包括数据量(volume)、速度(velocity)、多样性(variety)、易变性(variability)及真实性(veracity)。其中数据量、速度及多样性这3项是一般较常用来评估大数据的标准。
由于使用者平日在网路的应用习惯,举凡使用搜寻引擎、即时通讯、看影音节目、气象、听音乐、购物、社群活动、上传相片、电邮及阅读新闻,Yahoo都有提供对应的服务,其中光是使用者接触到的媒体内容、电子商务及数位行销广告的使用行为分析,就可以产生非常大的商业价值。在分析大数据时,Yahoo一定会做好个人隐私保护,只有行为数据才是真正可以分析的行为。例如,光是早餐的麦片种类就超过70种,往往会造成消费者选择的困扰,但如果透过适当的使用者经验分析,就能提升使用者的正面体验。
以一个小资女班族的日常生活为例,早上在搭捷运上班途中,打开手机看新闻,透过大数据分析,就会优先提供这位使用者平常阅读的影剧新闻、近期因为想要旅游而常关注的旅游文章,以及最近热门浏览的财经新闻。
透过大数据分析使用者行为,也能让使用者得到更多相关资讯。如使用者在点击购物中心84折运动的资讯时,网站就会提示使用者之前看过的那些商品,其实也适用此活动。
甚至在使用者因为点选了广告推荐的日本秋季赏枫行程,个人化推荐模组就会显示超级商城的冬季新装长大衣,或是日本零食、美妆等商品资讯。而且当使用者下班后经过药妆店时,超级商城App也会提供有限定商品折扣的讯息,而且凭App产生的条码,到店购买就可享有第二件7折优惠。
Yahoo首页每天分析超过1亿个以上的网路使用行为,才能提供使用者最感兴趣的互动,而且使用者的网路使用行为愈多,Yahoo提供的资讯也会愈精准。
而对厂商而言,精准行销广告本来就会有提高广告投资效益的效果,如果能根据使用者行为,在首页出现相关的广告,或提示相关的行销活动,抓到使用者的需求,销售将会成倍数成长,尤其是个人化模组的促销量,效果又会比网站推荐模组的效果更好。
针对电子商务,Yahoo台湾团队自主研发演算法与归纳消费者行为模式进行分群,透过数百群产品推荐模组,提供更优质的个人化服务,让购物中心来自个人化推荐模组的业绩显着增加。电子商务方向的大数据分析经验,发现使用者对于即时性的要求很高,也就是说,使用者的任何行为,要在10几分钟后就能完成分析,提供进一步的建议。
要做到前述的使用者行为分析,其实需要各种数据分析技术支援,如分析消费者各类行为与需求的预测模型,也要有能力即时侦测互动事件,并回馈产生最佳的个人化服务内容,而具备一个能够从互动产生的大数据中,快速地搜集、储存、撷取、汇整与计算的大数据分析平台,更是其中的关键要素。
大数据分析平台的运作过程,必须先要有数据来源,然后透过Hadoop、Shark及SQL等技术,很快地完成数据分析处理,最后再将结果储存并展示在使用者的面前。此外,大数据要做到个人化分析应用,科学建模(Science Modeling)的重要性不言可喻,科学建模依据的数学或科学理论,透过雅虎的实际工程(Practical Engineering)及适应学习(Adaptive Learning)能力,可以具体实践出成果。大数据分析要做到个人化应用,批次讯号及即时讯号的分析技术,两者无法相互替代,必须相辅相成,再透过分群数据技术及个人化引擎,最后才能提供为使用者个人量身订做的专属建议。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28