
大数据畅通需打破壁垒早立法_数据分析师培训
大数据时代,人人都是大数据的使用者,人人也是大数据的制造者,人人离不开大数据。但是,大数据从哪获取?大数据是否安全?使用这些数据是否涉嫌侵害隐私?大数据是否有效?等等,上述系列问题,已经成为我国迈入大数据时代绕不过去的坎。挑战伴随着机遇,携手来临。
打破壁垒提上日程
谁拥有大数据,谁就拥有了未来。因此,含金量越来越高的大数据,受到市场各方尤其是金融业的高度关注。
证券业有中证登,银行业有银联,保险业早在2014年成立了中国保信。目的是为了加强行业公共基础设施建设,全面提升保险经营管理的信息化水平。大数据时代,保险试水信息航母平台建设。
中国保信公司常务副总裁罗胜在月谈上表示,如果要利用大数据,一定要有消除社会上的数据门槛和数据障碍,打破数据壁垒。但在这方面做的确实不好。
基金公司在量化管理上,数据的应用非常广泛。但在国寿安保基金经理李康看来,目前大数据的应用只是刚起步,因为有很多数据,金融机构是难以得到的。
与会者认为,由于数据本身的封闭、数据的不开放,当然,也不排除在数据应用本身、技术提取方式方法上的问题,使得目前我国数据的共享程度不够。
在目前环境下,要解决数据间壁垒问题,确实没有太好的办法。中科院金融科技中心首席科学家兼副主任刘世平的方式比较实用。他透露,“我们在每个地方基本上都是找地方一把手,否则的话,目前很难打破壁垒”。
优股网创始人卢常福说的很干脆,“就是要开放和降低行政门槛,目前,像金融业是比较严格的。”火热的资本市场,越来越庞大的数据体系,对于证券数据的分析者而言,迫切需要放开数据的最终出口。当然,这可能涉及牌照管理等系列监管问题。
其实,行政管制现在比较严格的地方,在行业的商业模式以及发展空间,都会受制于原有管制。需要大量的新生力量进入,带来新的活力。因此,一个行业要健康发展,一定是流动的、开放的。
人们对于新崛起的大数据,爱戴之余,如何商业化,商业化到什么程度,心里都没谱。正如罗胜所言,数据的使用和应用,商业化肯定是一个趋势。但要把商业化和过渡商业化、商业化应用和非商业化应用区别开。
应为大数据立法做准备
新三板上市公司北京精耕天下董事长姚世忠举例称,因为税务的数据和银行的数据存在一定差距,能否分别获取相关数据,通过大数据公司,精准服务客户。
实际上,姚世忠提出了一个很敏感的问题。即,在哪种情况下哪种数据是可用的?一家做某地税务数据的公司,并不表示这家公司拥有数据本身和数据的使用权。这涉及数据的安全性、数据的隐私性、数据的可得性问题,以及数据的可用性问题。
“哪些数据是可用的,哪些数据是可得的?获取数据的方式方法是不是合理、合法、合规,这个是大数据时代一个非常重要的议题”,刘世平点评说。
显然,大数据这么重要的领域,立法是肯定刻不容缓的。
罗胜也认为,现在国家强调依法治国,在大数据领域制定相关法律,用法律维护数据的严肃。
除了要从根子上解决立法问题外,还需要走出目前认识上的误区。即大不等于多,大数据时代,应该更加强调数据的有效性。也就是说,不要为了迎合大数据而过度滥用大数据,规避进入大数据的误区。
积木盒子风险控制副总裁谢群认为,如何权衡在有限的资源、数据和时间里,得到一个最有效的决策,这是大数据时代带来的一些挑战,而公司目前已经迈出了非常有益的第一步。
李康也因为,数据本身的有效性是值得思考的。大数据时代,不在于数据的多少,因为这是相对概念。关键问题是数据本身能不能对这个事物本身进行准确的描述,且能描述其他内在本质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18