
中国企业需要怎么来面对大数据时代的来临
显然,大数据这一变革并非一蹴而就,而仍处在稳定的量变阶段。某种意义上,Teradata天睿公司的业绩本身就能证明这一行业确实正在增长,截至 2012年12月31日,Teradata天睿公司第四季度营收为7.4亿美元,同比增长10%。2012年全年营收为26.65亿美元,同比增长 13%。
Bill Franks认为,对企业来说最困难的事情不在于怎么来做选择、来实施大数据分析,大数据与传统的数据相比,需要去改变企业流程与文化,先行者将会保持领先,而跟随着将会错失机会。现在大数据的炒作确实已经到了顶峰了,但炒作的下面也有数据价值的存在,企业应该敏感地抓住这一机遇。
大数据的泡沫与真实价值
不知不觉间,大数据热潮席卷了整个IT产业,与其他种种风潮一样,大数据也存在着商业性的夸大和炒作。2011年惠普出价是103亿美元收购了Autonomy,最终这笔投入被视为非常失败的收购。对于这种现象,Bill Franks表示,大数据泡沫的破裂是一件好事。
他表示,现在大数据的炒作确实已经到了顶峰了,但炒作的下面也有数据价值的存在。炒作的泡沫破裂是一件好事,以上世纪90年代的互联网泡沫破裂为例,当时大量的人力和资金被投入互联网领域,此番景象就像今天的现在大数据。但随着互联网泡沫破裂,产业有了一些动荡,但泡沫破灭后真实的价值体现出来,互联网最终还是改变各个行业或者每个人。
大数据热潮也是一样,即使话题的炒作会冷却,但是大数据分析的价值会继续下去,重点是如何采取正确的策略、流程和方法去从大数据分析中获得价值。应该更多地专注一些建设的东西,比如需要哪些投资,需要培养哪种技能去实施大数据应用等。
他认为,大数据领域确实有些收购有估值过高的情况,但并不意味这种收购就没有任何价值。几乎所有的数据都有其递增的价值。尽管数据的价值有时被高估了,但就大数据整体而言,它会给我们带来极大的影响。
大数据的核心并不仅仅是技术
Bill Franks对诸多大数据的宣传中刻意强调技术门槛并不满意,他认为,90%以上的企业可以用他们90%的现有需求和技术、工具来解决现在的大数据问题。大数据真正可以解决的问题不是技术问题,而是人、文化、流程或者基础设施。
他强调一点,自己撰写《驾驭大数据》这本书不是为了对Teradata进行推广,主要是希望帮助人们去面对这种大数据时代,是面向整个行业、大众的一本书,也不是要通过这本书要来关注Teradata自己的业务流程或者具体产品,而是提供一种针对整体大数据的做法和想法。
他介绍,最困难的事情不在于你怎么来做选择、来实施大数据分析,而是决定采用什么样的方法来更好地发挥大数据的价值,而且能够改变它的流程。与那些传统的数据相比,大数据需要去改变流程与文化,很多企业不愿意去改变传统的方式,但竞争对手可能就领先一步去做,几年之后再去跟上去做的话,就会错失很多机会。
据悉,在《驾驭大数据》一书里,Bill Franks刻意强调了文化和理念,并提出一个分析创新中心的概念。他认为,依靠创新中心,企业拿出少量预算、人力资源、技术资源等做一些存在一定风险和结果尚未确定的小实验,可以用最小的代价实现文化的转变,进而适应大数据时代的节奏。
给中国企业的忠告
对刚刚涉入大数据浪潮的中国企业,Bill Franks举了一个冲浪的例子来加以忠告:
过去30年我可能在同一个海滩上,同样的浪潮进行冲浪了。后来,我换一个新的海滩,面对一些新的浪潮的时候,我就需要用一种新的方式去冲浪,需要使用新的冲浪板,但由于我过去30年的经验,很快就能适应新的浪潮。对人员的培训也是这样的,过去有一些数据分析经验的人才,只需增加一些新的对大数据分析的培训也能很快上手。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18