
大数据时代推动数据中心变革_数据分析师培训
近几年,随着网络及各种信息处理方式的不断涌现,物联网、移动互联网、社会化网络等应用的普及,各类数据呈现前所未有的爆发性增长。据IBM的研究显示,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到今天的44倍。人类正大步向大数据时代迈进。
根据IDC预测,截止2020年,全球所有IT部门拥有服务器的总量将会比现在多出十倍,所管理的数据增长50倍,而IT管理人员的总数量增长幅度只有1.5倍。
因此,如何实现大数据的高效存储以及有效提取,成为数据中心运维者所不得不面临的问题。虽然大数据为数据中心运维者带来了诸多的难题,但也变相的不断推动传统数据中心向高节能性、高稳定性、高安全性、高可扩展性、高密度等趋势发展。
在大数据时代背景下,数据中心趋于模块化、自动化、绿色节能的趋势得到了业界的共识。
模块化数据中心具备快速部署、节省成本,未来还可以根据业务需求逐步增加计算能力、快速扩容的优势。数据中心建设初期无法准确预测未来的业务增长变化,模块化的数据中心充分考虑到循环利用和可持续性增长,使未来面临升级时会更加得心应手。
数据中心自动化,就是要具备虚拟化技术、运营协调、网络负荷管理、服务器自动化、存储自动化、策略设置等完整自动化功能,可帮助用户充分应对业务和管理挑战,实现手工流程自动化,在节约成本的同时,真正帮助企业实现安全、高效和7x24无人值守的新一代数据中心。
在绿色循环利用方面,和传统的采用散热片对芯片散热的手段不同的是,越来越多的数据中心采用热水散热技术,即一定温度的热水进去,一定温度的热水出来,为芯片降温,能够做到零排放和循环利用。
迎接大数据时代的来临,数据中心将如何实现数据存储、如何保证数据安全、如何简化结构,第八届IDC大会为您解答疑问!此次,大会组委会将邀请CCSA、TGG等国内外专家现场分享数据中心前沿技术,预计本届会议规模将达到3000人以上。
IDC大会专题地址:http://idcc.idcquan.com/2013/
近几年,随着网络及各种信息处理方式的不断涌现,物联网、移动互联网、社会化网络等应用的普及,各类数据呈现前所未有的爆发性增长。据IBM的研究显示,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到今天的44倍。人类正大步向大数据时代迈进。
根据IDC预测,截止2020年,全球所有IT部门拥有服务器的总量将会比现在多出十倍,所管理的数据增长50倍,而IT管理人员的总数量增长幅度只有1.5倍。
因此,如何实现大数据的高效存储以及有效提取,成为数据中心运维者所不得不面临的问题。虽然大数据为数据中心运维者带来了诸多的难题,但也变相的不断推动传统数据中心向高节能性、高稳定性、高安全性、高可扩展性、高密度等趋势发展。
在大数据时代背景下,数据中心趋于模块化、自动化、绿色节能的趋势得到了业界的共识。
模块化数据中心具备快速部署、节省成本,未来还可以根据业务需求逐步增加计算能力、快速扩容的优势。数据中心建设初期无法准确预测未来的业务增长变化,模块化的数据中心充分考虑到循环利用和可持续性增长,使未来面临升级时会更加得心应手。
数据中心自动化,就是要具备虚拟化技术、运营协调、网络负荷管理、服务器自动化、存储自动化、策略设置等完整自动化功能,可帮助用户充分应对业务和管理挑战,实现手工流程自动化,在节约成本的同时,真正帮助企业实现安全、高效和7x24无人值守的新一代数据中心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23