
大数据让跨界更容易_数据分析师培训
上个世纪中叶,计算机还是一个要占据整个房间的庞然大物。在冷战期间,美国获取了大量前苏联的各方面资料,但苦于翻译人才不足,只能求助于计算机技术来解决翻译压力。1954年IBM公司将250个单词和语法规则搭配,将60个俄语断句翻译成了英语。当时有乐观派专家对媒体称“三年后的机器翻译一定会非常成熟”。
但这种思路很快就被证明是种误导。因为语言的变化是极其灵活的,一个单词在不同的语境和情绪下有着截然不同的含义。就像是中文的 “哪里”,可以是询问位置,也可以是一句客套话。而IBM的单词配语法有着很大的局限性,语料库始终在追求精确的语法,而人们的表达却越来越随意。到20 世纪90年代,IBM投入了大量的资金挑战机器翻译,却收效甚微,最终项目无奈终止。
2006年谷歌公司开始涉及机器翻译。谷歌的语料库跳出了两种语言互相对等匹配的传统文本翻译思路,不再仅依靠两种语言之间严谨的语法词法联系。开始基于全球互联网,利用一个更大更庞杂的数据库来进行翻译。
如果只追求单词和语法的准确,那谷歌语料库只能算是一堆残渣废料。因为谷歌语料库的内容既有来自国际组织的标准文件,也有来自网络论坛的“闲言碎语”和大量其他未经处理的互联网讯息,它掌握了不同语言质量参差不齐的文档大约有几十亿页,其中包容了大量的拼写错误。这海量的“原版”语言构成了跨语言表达的“训练集”,可以正确地推算出词汇搭配在一起的可能性。谷歌翻译出来的文字从语言美学角度来看确实没有美感,但语义沟通还是不成问题的。学会一门语言到通读文献的水平需要数年的时间,而在这种机器翻译的辅助下只需要一瞬间,细想起来运用大数据手段解决沟通壁垒的效率还是立竿见影的。
大数据的成功运用打破了不同语言之间的交流壁垒,提高了两种语言的沟通效率。在现实的经济活动中,去理解一个陌生领域的难度不亚于理解一门全新的语言。这样的问题在银行风控部门的工作中表现最为突出。各个行业发展迅速,银行面对的申请贷款企业来自各行各业,每个行业的特点迥异。尤其现在跨行业经营的现象与日俱增,这大大提升了对银行客户经理本身的素质要求。当银行面对一个全新的行业时,跨行业的理解难度就像是面对一门新语言。其次出于成本的考虑,银行负责贷后监管的人手毕竟有限,即便每个责任人再努力也不可能有充足的时间对手上的若干家贷款企业逐一跟踪。所以在短时间内有效了解该行业的管理特点,风险易发节点、频率对银行的贷款风控至关重要。简而言之,银行风控部门亟待解决的问题就是如何降低跨界沟通难度、提高跨界沟通效率。银行和企业的“跨界沟通”也需要一种有效的“翻译”手段。
大数据手段冲破语言沟通障碍案例对经济领域的跨界沟通有着重要的指导意义。传统的思路中,资方会通过财务报表来衡量一个企业的优劣,但事实证明这种办法是“小数据”思路,在数据采集手段更为便利的今天,似乎财报的短板在日益凸显,毕竟财报的三张表是可以用PS手段来美化的,并不能如实反映企业情况。
谷歌语料库包含了互联网上的各种语言“细节”,在翻译的过程中会甄选最贴近真实情况的平行文本,所有能最大限度反映语言的本意。一家企业的财报数据量一般是几十个KB,而如果统计几年的明细数据可以到十几个GB,这写明细数据包括企业订单、库存、下线、结算、付款这些核心环节的所有数据。通过相应的大数据算法模型来进行清洗和分析后“翻译”成银行或相应部门能够“理解”的版本,是解决信息不对称问题的有效途径。
李克强总理在刚刚结束的两会上也提到了“互联网+”和“大数据”的概念,未来几年的大数据和互联网的发展基调非常明显。事实上国内已经有企业在“大数据金融”领域走在了世界的前列,通过大数据手段为中小企业争取了数十亿的纯信用融资,并且至今没有发现一笔不良。大数据的概念在深入人心,大数据成功实践的案例也在不断增加。文章来源:CDA数据分析师官网
大数据的魅力在于“通达”,大数据手段可以提高两种不同语言的沟通效率,可以降低不同经济领域的跨界难度。尤其对于金融部门,大数据手段恰可以真实反映企业状况,提前判断未来可能发生的经营风险。大数据时代来了,谷歌让两种语言的沟通更顺畅,经济领域的跨界沟通还会远吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18