京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与商务运营:从商管与技术的双面观点
大数据如今已经成为最新的竞争趋势,原因在於数据数量汗牛充栋,所以也让整个世界之间异常通透,影响范围无远弗届,企业必须要随时留意那些业务受到大数据的影响。
如健康照护服务及定位数据如果加以混搭,虽然可以提供更进一步的价值,但如何说动使用者开放或分享,其实需要更细致的说服过程。此外,大数据分析所呈现的世界,客户需求会更加清晰,但市场区隔也会变小,产品及服务必须要更加客制化。
许多蒐集数据的工具或技术,如感测器、通讯装置、解析软体的价格不断下降,形成物联网与数位油田的世界绝非梦想。但数据分析技术愈精细复杂,决策考量虽然也会更加全面,可能遭遇的风险也会变得比较小,就连美国也缺乏分析人才,而且在扩大大数据管理的同时,会不会反而取代原来的管理,也是必须注意的课题。
尽管如此,大数据分析仍会为企业带来许多机会,可以洞察出原本被隐藏的资讯,进而做出更明智的决策。例如消费者在购物网站上的点击串流,与社群网路资讯结合起来,会形成更可靠的推荐品项;或是蒐集各地天候与土壤数据,以评估地域特殊性层级的农作物风险等。
如果能将数据分析融入作业流程中,甚至可能帮助企业进行自动化决策。如麦当劳的高速影像解析系统,可以直接提供管理者所需要的作业资讯,随时进行调整,而不用再像过去一样,依赖色纸与卡尺来控制产品的品质。
透过大数据分析技术,更可看到过去可能看不到的资讯,如电邮、保证卡、客服电话录音、医嘱及来自社群媒体及政府的公开数据等,都可能为企业带来更多的商业价值。
但企业的商业模式,也会因为大数据分析而有所改变。指出,企业要开始思考,可以通过什麽方式或途径来赚钱,如何运用大数据产生差异化的产品或服务,例如企业是否能够依天气型态、付款量与热销商品类别,协助供应商适时发现真正的需求。
从目前云端或大数据有关的创新应用案例中,解决方案的发展趋势有下列几点,首先就是有能力整合结构性及非结构性数据,尤其是非结构化数据,重要性正在与日俱增,但由於不是每个使用者都熟悉工具的使用,因此应用介面一定要做到简单化,而且要能善用开放数据及群众外包(Crowdsourcing)的资源。
应用大数据的产业类别,目前以零售、健康与医疗、城市与运输、制造业、金融服务业为主,如果想要发展大数据服务创新,当务之急就是要设法培育数据分析人才及导入云端服务。
企业如果想要建立与大数据相关的商业模式,一定要先建构出传递数据的网络,以适地适时的传递数据,并加以整合、交换、重组。重点在於何种商业模式适合企业当前的组织,才能迎向下一波潮流的康庄大道。
企业如果想要运用大数据建立商业模式,在解决方案的使用技术方面,储存与实现技术都要兼顾,而且储存数据的技术最好能够朝向分析的方向迈进;其次是数据类型,虽然非结构性的数据类型居多,但仍需要设法与结构化数据结合,因为许多演算法只能处理结构化数据;最後则是要有更多的数据解析任务类型,包括叙述性统计分析、(即时)预测建模、集群、推荐系统、声纹分析及线上广告等。
企业要建立大数据商业模式,必须要与许多合作夥伴共同承担风险,而且形成规模经济後,才能掌握相当的自主策略控制与更大的收益潜力。
至於大数据业务的的获利方式,往往需要取决於数据的客制化程度,以及分析出来的数据与客户的关系,才能让客户掏钱出来。如何做好数据建模,变得相当重要,需要融合统计、机器学习、作业研究(运筹学)等各种领域。
以文字数据探勘的过程为例,数据分析的过程常常需要相似性衡量,依此找出真正有价值的资讯。指出,数据科学的通用手法,除了要能明确说明理论与模型外,假设较少的机器学习的领域也需要加以注意。而模拟与数学规划是常用作业研究工具,建立模型规格,并运用模型产生数据、预测值或推荐。
大数据其实也潜藏着许多虚假与危机,所以一定要做好数据前处理的工作,以及慎选适合数据性质的模型进行分析。这些要务先要有优质、开放及灵活的工具,才能具体实现各种创意,并做到跨领域且抓住知识的源头,才能深入数据价值萃取的核心。
最後强调,企业只要「一」心向着数据理解的根本要务前进,精通至少「两」种弹性的分析工具,掌握统计、机器学习与运筹学等「三」大类模型,就可大步迈向数据驱动的决策厘订新纪元。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27