
实现挖掘大数据价值有哪些因素
很多公司都在探索如何挖掘大数据的价值,但有一类公司不得不擅长做这项工作,那就是:cda数据分析师或数据分析提供商。这些公司的商业模式决定了其必须能够有效、持续地提供客户愿意买单的数据产品和服务。下面将分享一家伟大的数据分析提供商- ComScore,如何通过3个关键因素(一个便捷、可扩展的平台,一支深悟数据分析的员工团队,以及对客户的深刻理解)来实现对大数据价值的挖掘。
一个便捷、可扩展的数据平台
ComScore提供服务的基础是14个PB的多种来源在线数据,这些数据实时地从全球范围收集,这就是公司现在称之为大数据的东西。数据的来源有4个主要渠道。第一个来源是样本库数据,来自200万个互联网用户,美国境内和境外用户各有100万人。样本库成员允许ComScore秘密地采集用户行为和人口特征。人口调查数据是第二个来源,从获准安放在大约90%的美国数字媒体机构百强公司里面的传感器获得数据。第三个数据来源是采用专属调查的方式,从样本库成员获得的认知数据。第四个来源是从战略合作伙伴获得的数据。比如,ComScore采用会员卡店内购买数据,来帮助客户将在线广告活动与线下商店购买行为紧密结合在一起。在上世纪90年代后期,可管理ComScore数据工厂的主流商业技术解决方案还没有出现。ComScore就开发了一个高效、获专利保护的技术平台来存储和管理大数据。到2013年,技术团队已经将平台从一个专有的解决方案进化为一种面向服务的架构,支持在MapR的Hadoop和Pivotal Greenplum数据库上运行的3个关键系统,每个系统都有独立的工作任务和扩展需求。ComScore需要不间断地呆在平台的顶端,在过去的12个月里,数据量大约增长了80%。
一支深悟数据分析的员工团队ComScore依赖它出众的员工来掌握大数据的艺术和科学。它已经成长为一支1200人的全球团队,每个人都拥有不同水平的"数据科学家"能力。为了跟上公司成长步伐而选择和开发这些员工,公司领导实施了许多人才管理战略。其中一项战略是:首先从大学的商学院和数学专业招聘分析人才,并给她(他)们提供更多的分析培训。ComScore有一个正在进行的公司内部范围培训项目-ComScore大学,大部分员工都参加。另一项实践是旨在培养一支领域广泛、深悟数据分析的工作团队,根据员工的不同技能水平在整个公司成立不同的小组,但与此同时,员工必须具备足以确保这些小组能顺利沟通的基本技能。而这些需要沟通的团队通常都在同一个地方办公。公司领导层还利用矩阵式组织架构,将具备不同技能组合的人才结合在一起。比如,ComScore同时运行了好几个并列的团队,每支团队都有一个商业产品经理来理解产品的开发路线图,以及分析师们来监控数据质量和分析方法论。这种方式被认为对产品开发流程尤为重要。
对客户的深刻理解获得行动的洞察力
ComScore每天发布大约15万份在线报告。其中的挑战在于如何传播优秀的报告,让客户不仅能获取洞察力,而且还能将这种洞察力与工作任务紧密结合。当客户将所获得的洞察力付诸行动时,比如改变一次广告活动的策略或定位一个新的细分客户群,她们可以从ComScore的产品和服务中取得价值。但是作为一个数据分析提供商,ComScore对于客户使用数据的方式缺乏控制力。ComScore能够控制的是它自己对客户需求的理解。该公司致力于在专业知识领域深度挖掘,并理解其客户想要解决的难题。具备了这些知识之后,ComScore就使大数据变得“可消费”,并且可以积极主动地帮助客户识别哪些是可付诸行动的洞察力。不得不承认,数据可以在短时间内压倒一切,激励客户聚焦于解决一些关键问题,然后反复适用。ComScore给它的客户提供拥有图形界面、整合可视化和图表呈现的软件工具;通过向导和模板报告的大量使用来支持客户的自助服务;当需要即时决策时,通过控制面板提供数据的实时访问;以及创建知识门户来支持知识的分享。更进一步,公司还专门成立了一个组织单位,来为其产品和服务的可消费性提供支持。
一切都归于数据
在大数据的空间领域,必须不断地适应才能跟上其迅猛发展。多年以前,ComScore还仅仅期望测量挂有客户广告的网页的访问者数量;今天,它则必须报告这个广告是否被真正看过。在早期,公司客户对非美国数据还没有多大兴趣;全球化的发展催生了对ComScore覆盖全球数据的市场需求。此外,ComScore还需要对技术相关的变化保持跟进。比如,客户可能会需要分析类似来自视频和智能手机的数据流这样的突发性数据类型。另一个重要的变化例子是,使用大量不同设备访问在线内容的用户数在持续增长。这样,公司客户就需要能识别跨多个设备的独立用户。ComScore的平台、数据分析师人才和深刻客户理解赋予公司足够的能量,来应对大数据产业环境的风云变幻。其便捷、可扩展的数据平台使得ComScore能够适应数据量的迅速增长,并获取新的数据类型。交叉组合的团队和技能,与拥有深厚分析技能的工作团队相结合,使它能够顺畅地适应需求的变化。对客户使用分析工具的良好培训,允许公司能够预期未来发展趋势,并据此调整其产品和服务。CISR(MIT信息系统研究中心)相信,对借助大数据发展自己感兴趣的公司可以考虑采用ComScore的方法,以获取良好的服务。cda数据分析师培训数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14