
管理一个庞大的计算系统并不是件容易的任务,但是通过更好的管理和适宜的规划能减少工作的繁琐和麻烦。虽然你可能无法实现期望中的尽善尽美,但你可以改变数据中心管理的方法。以下是数据中心管理中应该避免的十大错误,大家不妨参考一下自己有没有类似问题。
1.虚拟化部署不足
如果你管理的数据中心还没有部署虚拟化来节约金钱,那么显然你是落伍了。虚拟化技术能帮助你节约寸土寸金的机架空间。虚拟化还可以为那些不存在系统节约额外的制冷,能耗和服务费用。
2.没有使用云计算
与虚拟化技术类似,云计算要求你掌握公司或者用户的实际能力。亚马逊在线能提供适合随需能力需求的灵活性和扩展性。举例来说,使用Canonical公司的Ubuntu Linux Server Edition,你可以创建自己的私有云或者动态调整亚马逊在线的弹性计算云。不过现在云计算还是处于盲人摸象状态。
3.设计缺陷
数据中心的设计缺陷很难被避免,但是重新设计要比重头再建要便宜的多。一座有20年历史的数据中心看起来依然光鲜,但是已经不再符合当下的环保标准。你必须重新设计数据中心的电力设备来满足刀片系统的需求。你可能还得重新更换老化的制冷系统等,因为当下的服务器比他们上一代产品的制冷环境要求更高,效率也更高。
4.扩展性局限
"640K的随机存储器对于任何人来说都足够了"我们无数次听到据说是比尔.盖茨这样的言论,那大概是1981年吧?无论比尔.盖茨是否说过这样的话对今天而言都已经不再重要了。我们需要吸取的教训是当你构建数据中心时,要将摄氏温度调整为华氏温度:这样你考虑的数量就翻倍了。使用从摄氏到华氏温度的公式能为你的数据中心预留将来升级的空间。一座占地面积2000平方英尺的数据中心不够吗?应该有4032平方英尺取而代之。规划不足毫无疑问会浪费占地空间或者其他能力。
5.安全性放松
进入任何数据中心,你都会看到读卡器,视网膜扫描仪,循环锁,称重仪或者其他高科技安全系统。但是与那些严密的安全措施相比,你会发现一些关键的安全访问入口被绕过了。物理安全没有岔路可走。如果存在这种岔路,你的安全性就会大打折扣。
6.服务器管理偶发性
为了管理你的服务器系统,你需要物理访问或者远程进行管理吗?时下每台服务器系统在维护上通常都是用远程管理系统来完成。使用和激活亦是如此。对于每个进入数据中心的人来说,你可以会遭遇系统故障。错误的系统标识,错误的定位,误读的系统名等等。如果你配置物理系统时可以使用远程访问控制台就好的多。
7.整合遭遇问题
开展数据中心管理业务就是要最大化的减少机架或者机房内系统的数量。服务器整合就是实现这个结果的解决方案.2:1或者3:1的整合比例都是无法接受的。5%到20%利用率范围运作的物理系统可以轻松的将5台,6台或者更多的服务器整合到一台系统上。没有得到充分利用的系统会浪费机架空间,能耗和服务支持的费用。
8.过度冷却或者不够冷却的空间
你的数据中心温度是多少?你应该检查一下。如果你的数据中心温度在70华氏度以下,你就是在浪费金钱。服务器需要的空气流动超过他们对冷却温度本身的需求。在你的数据中心巡视一番。如果你感觉舒适,那么服务器感觉也比较舒适。没必要非得让你的数据中心员工感觉过冷或者过热。
9.动力不足的设备
关于数据中心有空间可用却动力不足的话题你听说过多少次了?动力不足的设备是规划不足的牺牲品。虚拟化会对此有所帮助。服务器整合也能起到一定作用。但是未充分利用的设备在短期内是比较突出的问题。
10.机架过于拥挤
如果你曾经尝试将服务器把机架挤的满满当当,你可能奢望自己成为万能的。你可能认为在系统之间留有间隙会导致低效和浪费,但是那些从事从系统中插入或者拔出组件工作的人可能要感谢你了。匮乏的规划会导致系统过度拥挤,这是没必要的。虚拟化,整合和更加高效的安排会缓解这个问题。服务器偶然的电源松懈导致的断电会让你明白在系统之间留一些间隙是有好处的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10