
制造业在大数据时代迎来新的发展机遇
集装箱拖车的轮子太多也太大了,因此对于货运公司来说,监测这些重型卡车轮胎的磨损情况,并且为其维护和更换轮胎,是一项相当艰巨的工作。
如果货运公司能把所有这些麻烦转移给轮胎制造商,情况会怎么样呢?轮胎上可以配置很多小型传感器,自动对轮胎进行监测,并将情况实时回传给制造商。而轮胎制造商在了解了每个轮胎的情况后,就可以定期安排轮胎的更换和维护了。
如此一来,对货运公司而言,运输里程增加了,安全性改善了,责任降低了,对数千个轮胎进行维护的流程得到了简化,甚至被彻底取消。在另一边,轮胎制造商接手了这些工作,也接手了安全风险,但也将从中获得回报——现在,制造商不只是在销售轮胎,更是在销售行驶里程。
这只是关于数据如何转变制造业的一个实例。如今,技术市场上还有很多人在四处炒作大数据和物联网的概念;但事实上,越来越强大的传感器和各类设备通过与后台系统、分析软件和云的连接,已经为各行各业带来了深刻的变革。随着这些联网运行方式的普及,制造业不仅得到了实现自动化和创造效率的全新手段,其管理层更注意到了利润增长前景光明的全新增长点——服务。
这一趋势不可逆转。根据微软委托IDC进行的一项最新研究,制造业在未来四年内从数据中获得的价值将高达3710亿美元。通过更好地利用数据,他们不仅可以提高生产效率、精简流程,还可以更好地管理客户关系,改善产品和服务。美国总统奥巴马最近宣布联邦政府将拨款1.4亿美元支持两家新设机构,正是因为它们能帮助企业收获不断增长的“数据红利”。而在长期以来一直被视为欧洲制造中心的德国,他们将这种新潮流称为工业4.0 ——其意义完全不亚于第四次工业革命。
对美国、德国,以及世界上其它所有国家而言,这一变革的第一阶段,首先是要从不断增长的海量数据中发掘效率,将生产车间与后台的IT技术连接起来,构成一个完整的“智能系统”。这种方式能够帮助制造商从生产流程中压缩成本,从而减轻发达经济体的压力,令其能够以更低的生产成本去更好地参与全球市场竞争。
每个人都希望生产线更精简、更高效,其实从许多方面来看,利用数据洞察来提升生产效率是最触手可及的办法。下一波机会就在于运用这些洞察,在供应链和需求链中构建效率,获取价值。诚然,要共享敏感业务数据是个挑战,但对大多数公司和企业来说,其回报将大于风险。
这一趋势已经改变了制造商看待自己及客户关系的方式。汽车的演进就是一个生动的例子。汽车的技术含量已经成为影响顾客购买决策的重要因素,并促使汽车厂商重新思考其与客户之间的关系。过去,这种关系基本上在交钱开票之后就结束了;而今天,汽车制造商已经变身成为科学技术的供应商。管理客户的售后体验、在汽车保有周期内为客户提供丰富、持续的在线服务,已变得与传统的生产销售工作同等、甚至更加重要。
在恰当的时间捕获恰当的数据,然后传送给企业内部恰当的人——这种通常被称为“数据民主”的处理方式,将是改变游戏规则的关键。一旦制造商透过各种设备、流程、人员和外部网络将分散的数据连接起来,数据就能进化成洞察。从此,制造商可以主动向客户发送备件和更新,安排维修事宜,预测存货需求和费用,而且这些工作的准确性将大大提高。而在过去,这些客户相关的工作往往需要耗费大量的人力、物力,并总会产生很多麻烦。
数据能通过释放制造业业务流程中的智能,去提升运营效率。而对于那些不仅想要节约成本、更希望能增加收入的制造商来说,服务,作为可持续的新收入来源,其吸引力要远远超过单纯销售装置或设备。可以将其想象成是在销售订阅服务,而不单单是卖一本杂志,或者是从远在意大利的总部为安装在纽约的设备提供服务。
要真正走上这条变革之路,制造商要做出一系列的抉择,而其中最重要的,就是选择真正有实力的技术合作伙伴。彼此间的信任、员工对应用软件的熟悉程度、对行业知识的掌握、用以连接设备生成数据的智能且安全的云服务、跨设备和服务的可扩充的大数据云平台、互操作能力、丰富的合作伙伴生态系统——上述这些还仅仅是制造商在选择迈进第四次工业革命时,应该用来评估合作伙伴技术能力的部分指标。
在这个普适计算日渐成型的世界中,拥抱数据文化的企业和单位必将获得巨大的潜在回报。尽管未来无法预测,但这一潜力所带来的诱惑,已经在制造业激起了新波的创新浪潮。现在,摆在制造商面前的只有一个问题——去引领这个潮流,抑或任凭自己被浪潮所吞没。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27