京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为信息安全赋予新的逻辑思维
信息工业技术的发展,催生了梦想的诞生与实现。一直以来,人类都希望机器能够具有人类智慧高效地完成工作,而这样的愿望,今天已经延伸至信息安全。
什么叫具有人类逻辑的信息安全?某位员工已经出差到外地,其账号却在公司办公室中登录内网访问重要资料,作为一名网络管理人员,当你知道这一切的时候首先会想到:这名员工的账号被盗了,公司的商业机密正在被窃取。之所以得出这样的结论,是由于按照正常的逻辑判断,将“出差”与“本地访问IP地址”联系在一起,在情理上是矛盾的。我们希望,机器也能够如同人类一般进行“逻辑思维”。结合大数据技术,今天这种智慧型的解决方案已经成为下一代信息技术的发展趋势。
大数据,信息安全分水岭
大数据技术在今天已经成型并已经运用多年。在国外,不仅思科和IBM这样的传统巨头在进行相关研发,一些新的企业,如Fireeye、Splunk等,也都凭借大数据在IT业界暂露头角。
环顾国内,很多公司也在进行大数据相关的研究并取得相当成果,但大部分都在应用分析方面,在信息安全分析方面却是新生事物,之所以新,是因为它引入了“列式数据模型”,弥补了传统“行式数据模型”的分析不足,这为信息安全的数据处理、数据分析提供了新的逻辑思维、新的分析角度,带来了新的安全价值。
在这些公司中,包括杭州合众信息在内的一些领先公司正走在这样趋势的最前沿。“言而优则唱”,长期的传统数据交换、数据安全分析实践使得这些公司在大数据处理、大数据安全分析方面具有先天优势。来自杭州合众信息的官方数据称,其与大数据处理相关的实时数据同步系统(RDS)、数据集成系统(ETL)、大数据一体化平台(UniOne)、大数据分布式全文数据库系统、大数据应用分析系统、综合安全审计系统等已经在住房和城乡建设部、工商总局、公安部、浙江公安等项目中有着不同程度的广泛应用,取得了极佳的社会价值。
信息安全已经上升为国家战略,信息安全应用环境也正发生着革命性的变化,强劲的驱动着这些传统的安全公司痴迷于大数据,希望利用大数据技术对传统信息安全赋予新的逻辑思维。于是,基于大数据的信息安全,这个综合了多项技术的新兴事物应运而生,如雨后春笋。纵观这些公司,但凡能崭露头角的,其不仅需要有信息安全开发经验,需要对数据采集、处理、分析、应用等有较深的理解,更需要企业有较深的、长期的业务和应用背景来构建大数据的整体逻辑。相信这一些安全企业可以借助大数据扬帆起航,开启安全市场新篇章,将经验拓展到更为广泛的应用领域。
大数据,业务的开发需要具备多方面的业务储备。
数据处理能力 数据处理是数据挖掘和分析的前道程序。数据处理的目的是从大量的、可能是杂乱无章的、难以理解的数据中抽取对于特定的人群有价值、有意义的数据。
数据分析能力 由于事务型数据和决策支持型数据的处理性能不同,需将决策支持型数据处理从事务型数据处理中分离出来,再从事务型数据库中导入数据仓库,继而采用OLAP(联机分析处理)工具、数据挖掘工具等进行分析、智能决策,提高决策的科学性及完善各种管理流程。
开源系统 开源技术将以成本的降低和企业级的IT自由度破解大数据之忧。性能方面,随着开源技术对数据掌控能力的不断加强,开源技术将在稳定性、安全性上得到不断完善和提升;创新方面,围绕开源技术的模式创新和服务创新已逐渐形成,更快地适应大数据时代的业务变革和转型升级。
分析调研机构Gartner很早之前就已经表态称,基于大数据分析的安全绝对是防范高级攻击的有效手段,但其“比较复杂”的体系构架让很多专业的信息安全公司难以涉足。实际上,在已经颇有些红海味道的信息安全领域中,基于大数据的安全已经成为了一道展现实力的分水岭。
大数据,受到资本市场追捧
直到今天,Gartner的态度依然没改变。在Gartner研究副总裁Anton Chuvakin近期撰写的博客文章中,尽管其依然承认基于大数据的安全技术具有良好的发展态势,但是由于复杂度太高,“95%的企业还未采用这一技术”。
布局未来,这是对当前着眼大数据技术的信息安全公司最为可靠的描述。实际上,一直在进行产业萌芽投资的资本市场,对于大数据领域一直持以认可态度。成立于2004年的Fireeye,在2013年上市后首日股价大涨80%。业内普遍认为,其在2011年前后转向APT防御与大数据方向,这一战略极大地推动了公司的发展。
在国内,机构与投资人都对大数据保持着持续关注。光大证券分析认为,国内公司在大数据领域的机会在于对细分行业市场的理解。实际上,这同实际产业状况不谋而合。以合众信息为例,除了主营信息安全业务以外,其另一项重点业务——大数据的分析和处理所瞄准的就是政府行业。合众信息的资料显示,其所提供的政府大数据服务,指的是服务于各个政府部门且根据部门业务需求搭建的大数据平台。平台不但提供大规模云平台技术支持、维护管理,还会根据数据特点组织大数据模型,提供满足业务实战要求的数据集成处理、应用开发集成。而整套系统的成功部署,已经为客户带了客观的经济效益。
大数据,似乎这是一个听起来已经被重复了无数次的老概念。但是,其所承载的是人们对于信息技术的向往与憧憬。这种憧憬的实现,毫无疑问是一个漫长且艰辛的过程。不过,我们相信,在逻辑思维的道路上的那群人会坚定不移地走下去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13