
大数据驱动中国特色的工业4.0_数据分析师培训
多少年来,美国因其拥有强大的科技创新能力,在商业、工业、政府等领域的科技进步上一直占尽先机。德国因为传统的制造业优势,可以纵观生产制造的全过程,不断提出针对以业务提升的核心转型因素,所以提出工业4.0战略。
从这个角度来讲,以科技为支柱产业的美国,与以制造技术严谨的德国,在各自工业智能化的过程当中,都有不同的演进路线。而当下,互联网应用高速发展的中国,在传统企业向智能企业转型的过程当中,也应该有自己的步调,走一条有中国特色的工业4.0道路。
中国的工业4.0应有什么特色
过去三十多年,中国经济快速的发展,变化可以说是翻天覆地。现在,中国已经是世界第二大经济体,而且全世界的经济研究机构普遍预测,中国将会在不远的未来超越美国,成为全球最大的经济体。根据IHS Global Insights预测,到2025年,中国将在化工、电子、制造、交通运输和公共事业这几个产业位居世界第一。
在这样的背景下,金融危机过后的这几年,使得人们清醒的认识到,光靠虚拟经济达不到真正意义上的经济转型,科技创新结合产业升级才是中国实业兴邦的正道。工业4.0正是在这样的时代档口被提出,其务实的本质与当下中国的经济环境不谋而合,所以备受瞩目。
趋势不可逆,这是绝对的。然而,如何在这个大趋势下,结合自身优势制定有特色的工业4.0战略,才是在新一轮全球产业竞争中占据先机的关键。中国产业的特色具备三点独特之处。第一、中国是全世界唯一拥有联合国产业分类中全部工业门类的国家,在多个现代经济支柱性产业当中,规模也是名列世界前茅的,但发展水平不均衡;第二、中国有世界上最大、增长最快的消费市场;第三、中国已经初步形成了一个发达的移动互联经济。中国移动互联网产业的快速崛起是过去十年来世界经济中发生的一个现象级的事件。
事实上,中国经济转型就是要抓住这三个特色,在发达的互联网经济的基础上,以大数据、云计算、移动和社交等新一代IT技术为突破口,驱动大规模、活跃的市场创新、应用创新和业务模式创新,才是中国经济转型的关键路线,才是工业4.0的中国特色。
大数据在中国特色工业4.0中的重要性
新一代的IT技术包括大数据、云计算、移动互联和社交网络,无时无刻都在改变社会生活与生产生活。基于中国经济转型的巨大市场,很多国外的IT厂商正是看中了国内工业转型的巨大市场,在软硬件与服务层面积极布局。显而易见,百年老店IBM 在此方面大有可为。当下IBM一改往日的made for China,帮助中国企业成长的市场战略,发布了其自身转型战略,made with China,跟中国企业一起成长的全新市场战略。并提出D世代企业商业路径,帮助中国企业加速智能化进程。
在IBM看来,所谓工业4.0,其实就是大数据驱动的智能工业。IBM大中华区副总裁冯国华认为,这是一场由首席执行客户(CEC)推动的,以“D世代企业”(大数据分析驱动型企业)的诞生与发展为标志的,以大数据、云计算、移动、社交等技术为主要驱动手段的工业革命。其中大数据分析的重要性尤为突出。概括而言,大数据深刻改变了工业企业的生产和决策。
而所谓“D世代企业”,是指那些为了更好地适应消费者的转变,需要借助大数据、云计算、社交、移动等新技术推动企业转型,从而帮助企业更好地满足消费者需求的企业。它们能够运用基于云计算的多种移动社交和大数据分析工具了解市场状况,预测客户未来需求,并根据数据洞察指导企业内部运作和市场销售的行动目标。
这一理念,与基于我国互联网高速发达的经济背景下,传统企业向互联网化的过程不谋而合。宏观层面上,也与我国提出的信息化与工业化融合的政策相辅相成。不难理解,传统制造企业转型升级,成为大数据驱动的智能化企业,终极目标是从产品、生产过程到企业运作全方位都实现了智能化,真正是基于以需求为导向实现个性化的生产制造。
显而易见,在我国这样一个越发重视用户体验的经济环境下,不单单是互联网企业,工业企业也非常重视自身的数据智能分析能力,企业都在利用数据挖掘来提升自身的决策便捷性,在全生产流程中预测未知风险,同时降低成本,可以说,大数据已经成为了很多大的制造型企业商业模式创新的有力推手。
携手中国企业进入中国特色的工业4.0
走中国特色的工业4.0道路,推动传统工业企业转型升级,成为大数据驱动的智能企业。大方向已定,怎么走,如何做,最大的难题应该是信息技术的选择与应用。如何将从设备、人、机器、流程、生态链上采集的海量数据进行分析并转化为有效的服务提供给客户,是打造大数据驱动的智能企业的焦点难题。
将大数据、云计算科技与移动互联网结合起来,中国的企业可以紧贴市场,与用户建立一种新型的互动关系,并且深入洞悉用户的需求。新一代IT技术还能帮助全产业整合和跨工业、服务业部门的整合,发挥中国产业的“团队优势”。IBM正在与国内工程机械、食品、环保、电力、物流等行业合作,运用大数据分析、云计算、移动互联等科技帮助提升产业整合度。
为了支持中国安全、可控IT产业的发展,IBM向中国开放了代表世界最先进水平的Power芯片技术和Informix等一系列主干型的高端软硬件技术,并提供配套服务。IBM希望这些措施能够切实可行的支持中国特色“工业4.0”的形成和执行,帮助中国各行各业创新升级,进而推动中国经济转型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01