京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的十大发展方向,中国成为大数据最重要的市场
如今,大数据俨然成为IT领域最受关注的热词之一。如果不想显得过于OUT,快来一起讨论大数据的价值和未来的服务方向吧。除了在分析领域、云技术方面的应用前景,Scale-out发展将成为大数据未来方向的主流。
1、大数据分析领域快速发展
大数据无疑是目前IT领域的最受关注的热词之一。几乎凡事都要挂上点大数据,否则就显得你OUT了。相信大多数人都能顺口说出大数据的四个特点:容量大,多样化,速度快以及高价值。但随着人们对于大数据的逐渐了解,人们开始讨论大数据究竟能够给人们带来什么样的价值?大数据的未来服务方向在哪里? 今天我就跟大家谈一下未来大数据的十大发展方向:
方向一:大数据分析领域快速发展
数据蕴藏价值,但是数据的价值需要用IT技术去发现、去探索,数据的积累并不能够代表其价值的多少。而如何发现数据中的价值已经成为企业用户密切关注的话题,于是大数据分析领域成为了人们密切关注的问,毕竟,这个直接关系到数据的利用情况。 随着大数据行业IT基础设施的不断完善,大数据分析技术将迎来快速发展,不同的挖掘技术,挖掘方法将是人们未来比较重视的领域,毕竟,这个领域直接关系到数据价值的最终体现方式。
方向二:分布式存储有了用武之地
大数据的特点就是数量量多且大,这就使得存储的管理面临着挑战,这个问题就需要新的技术来解决,分布式存储技术将作为未来解决大数据存储的重要技术。 分布式存储系统将数据分散存储在多台独立的设备上。这就解决了传统存储方式的存储性能瓶颈问题。分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
2、大数据与云技术的结合
方向三:大数据与云技术的结合
如果再找一个可以跟大数据并驾齐驱的IT热词,云计算无疑是跟大数据关系非常大的一个词语。很多人在提到大数据的时候总会想到云计算,二者还是有很多不同的,一句话来解释二者:云计算是硬件资源的虚拟化,大数据则是海量数据的高效处理。
3、大数据与云技术的结合
虽然大数据与云计算并不是一个东西,但是二者之间还是有着千丝万缕的关系的,目前,很多人认为,云计算将是未来解决大数据的最佳平台。云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化之后再进行分配使用,大数据则是我们处理的数据。云计算是大数据的处理器的最佳平台,未来,这种趋势的发展将越来越让二者的关系更紧密。
方向四:隐私问题让大数据受影响
数据价值对于企业来说是非常重要的,但是同样也有阻碍着大数据发展的一些因素,在这些因素中,隐私问题无疑是困然大数据发展的一个非常重要的要素。 一些我们之前看似并不重要的数据信息,在大数据中心,许多这样的信息就很可能轻松了解一个人的近期情况,从而造成了个人隐私问题。而且如今随着大数据的发展,个人隐私越来越难以保护。有可能出现利用数据犯罪的情况,当然关于大数据隐私方面的法律法规并不对,还需要有专门的法规来为大数据的发展扫除障碍。
4、大数据推动向Scale-out发展
方向五:大数据推动基础架构向Scale-out发展
基础架构是大数据首先面临的挑战,如何让基础架构能够存取更多的数据呢?传统的基础架构能否满足用户需求呢?目前,来说,虽然基础架构面临着一些挑战,但是当他的挑战并不是很大,但是随着大数据行业的发展,而且这种数据的增长将呈现爆炸式增长,就对传统的架构形成了迎新春。随着大数据量的逐渐增大,可以通过分布式的处理方式把应用复杂分散到分布式系统的各个节点上,而传统的数据处理将是运算能力非常强、CPU主频非常高的一台机器来处理,而不是大数据这种多个节点、多个CPU核数来处理,这代表了大数据时代发展方向从Scale-up转向Scale-out。
方向六:数据共享联盟的成立
对于大数据来说,未来,将可能将不同的行业更加细分,针对不同的行业有着不同的分析技术。但是同样对于大数据来说,数据的多少虽然不意味着价值更高,但是更多的数据无疑更有助于一个行业的分析价值的发现。 例如,对于医疗行业,如果每一个医院对自己的数据进行分析,相信也能够获得相应的价值,但是如果想获得更多的更大的价值,那么就需要全国,甚至全世界的医疗信息共享 ,这样才能够通过平台进行分析,获取更大的价值,所以为了,数据可能会呈现一种共享的趋势,数据联盟可能出现。
5、大数据安全越来越受重视
方向七:大数据安全越来越受重视
随着数据的价值的越来越重要,大数据的安全稳定也将会逐渐被重视,大数据不断增长,无论对数据存储的物理安全还是对数据的管理方式都要求越来越高,从而对数据的多副本与容灾机制提出更高的要求。
6、大数据安全
2013年,网络和数字化生活也使得犯罪的分子更容易获取关于他人的信息,也有更多的骗术和犯罪手段出现,所以,在大数据时代,无论对于数据本身的保护,还是对于由数据而演变的一些信息的安全,都将至关重要。
方向八:大数据将催生一些新的行业
一个新行业的出现,必将在工作职位方面有新的需求,大数据的出现也将推出一批新的就业岗位,例如,大数据分析师,数据管理专家等等。具有丰富经验的数据分析人才将成为稀缺的资源,数据驱动型工作将呈现爆炸式的增长。
7、中国成为大数据最重要的市场
方向九:大数据将成为企业IT核心
随着大数据价值逐渐被发展,大数据将成为企业IT的核心,毕竟在这个以盈利为主导的行业环境中,谁能够为企业带来更多的价值就将会更重要。在以往,IT系统更多的在企业中是扮演辅助工作的任务,而随着大数据的发展,IT系统也将具有更大的意义。如今,社会化数据分析也正在崛起,这对于IT和非IT来说都影响深远。越来越多的企业将开始分析舆情、地理位置、行为、社交图景和富媒体社会化数据来更好地了解客户需求,进行更有效的风险管理,IT部门也开始利用社交媒体应用协作解决问题,或者定义需求。
方向十:中国成为大数据最重要的市场
中国在未来将可能成为大数据最重要的市场,中国拥有世界上五分之一的人口,同时中国的发展正在处于快速的上升期。中国产生的数据将是巨大的,而巨大的数据对大数据的发展将起到促进的作用,而大数据在中国市场的发展也将领先。 全文总结:大数据将给中国的市场带来更广泛的发展机会,对于中国来说这个市场是非常有前景的,是值得大家重视的一个市场。各行业的客户和各行业的开发商也应该在大数据市场抓住机会,借助自己的优势创造更多的价值,在未来激烈的市场竞争中借助大数据走的更远。
随着大数据时代的来临,企业存储可扩展性成为关注的重点。传统模式受到业务不断变化需求的挑战,使得存储通过Scale-out与云计算相结合更容易满足用户业务不断增长的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29